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Approximations in cosmology
Defining the model

Born-Oppenheimer approximation

Open Issues

LQC provides the most successful physical application of loop gravity, and
one of the most promising avenues towards a possible empirical test, but...

1. Which is the relationship between LQC and the full LQG?

2. Can we describe the full quantum geometry at the bounce?

3. Can we include inhomogeneities ?

I Structure Formation
I Inflation
I Dark Energy
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The Cosmological Principle

I The dynamics of a homogeneous and isotropic space
describes our real universe.

I The effect of the inhomogeneities on the dynamics of its largest scale,
described by the scale factor, can be neglected in a first approximation.

I This is not a large scale approximation, because it is supposed to remain
valid when the universe was small! It is an expansion in n ∼ a

λ
!

I The full theory may be expanded by adding degrees of freedom one by
one, starting from the cosmological ones.

I We can define an approximated dynamics of the universe
for a finite number of d.o.f. .

Francesca Vidotto Dipole Cosmology



Approximations in cosmology
Defining the model

Born-Oppenheimer approximation

The Cosmological Principle

I The dynamics of a homogeneous and isotropic space
describes our real universe.

I The effect of the inhomogeneities on the dynamics of its largest scale,
described by the scale factor, can be neglected in a first approximation.

I This is not a large scale approximation, because it is supposed to remain
valid when the universe was small! It is an expansion in n ∼ a

λ
!

I The full theory may be expanded by adding degrees of freedom one by
one, starting from the cosmological ones.

I We can define an approximated dynamics of the universe
for a finite number of d.o.f. .

Francesca Vidotto Dipole Cosmology



Approximations in cosmology
Defining the model

Born-Oppenheimer approximation

Mode expansion←→ sum over triangulations

I The large scale d.o.f. can be captured by averaging the metric over the
simplices of a triangulation formed by n simplices.

I The full theory can be regarded as an expansion for growing n.
Cosmology corresponds to the lower order where there is only a
tetrahedrum: the only d.o.f. is given by the volume.

I Restrict the dynamics to a finite n. Define an approximated dynamics of
the universe, inhomogeneous but truncated at a finite number of
tertrahedra.

I At fixed n, approximate the dynamics by the non-graph changing
Hamiltonian constraint. This gives a consistent classical and quantum
model for each n.
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Classical theory
Quantum theory

Definition of the classical theory

Oriented triangulation ∆n of a 3-sphere (n tetrahedra t and 2n triangles f )

Variables


Uf ∈ SU(2),
Ef = E i

f τi ∈ su(2).

Poisson brackets

8<:
{Uf ,Uf ′} = 0,
{E i

f ,Uf ′} = δff ′ τ
iUf ,

{E i
f ,E

j
f ′} = δff ′ ε

ijk Ek
f .

Dynamics


Gauge Gt ≡
P

f∈t Ef ∼ 0,
Hamiltonian Ct ≡

P
ff ′∈t Tr [(Uff ′ − Uf ′f )Ef Ef ′ ] ∼ 0
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Classical theory
Quantum theory

Interpretation

I Cosmological approximation to the dynamics of the geometry of a closed
universe.

I (Uf ,Ef ) average gravitational d.o.f. over a triangulation ∆n of space:

- Uf : parallel transport of the Ashtekar
connection Aa along the link ef of ∆∗n dual to
the f ;

- Ef : flux Φf of the Ashtekar’s electric field Ea

across the triangle f , parallel transported to
the center of the tetrahedron: Ef = U−1

e1
Φf Ue1 .

f

ef

U
f−1 = U−1

f and E
f−1 = −Uf Ef U−1

f
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Classical theory
Quantum theory

I The constraints approximate the Ashtekar’s gauge
and Hamiltonian constraint Tr[FabEaEb] ∼ 0.

I Ct : Non-graph-changing hamiltonian constraint.

I Uff ′ ∼ 11 + |α|2Fab + o(|α|2F )

The expansion can be performed:

- for small loops whatever were Fab

- but also for large loops if Fab is small.

f

f’

Uff ′ = Uf Un...U1Uf ′
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Classical theory
Quantum theory

Adding a scalar field

I Add a variable (φt , pφt ). Represents matter, defines an n-fingered time.
I Hamiltonian constraint

St =
1
Vt

Ct +
κ

2Vt
p2
φt ∼ 0.

where
Vt =

X
ff ′f ′′∈t

p
Tr [Ef Ef ′Ef ′′ ].

I Ultralocal.
I Easy to add spatial derivative terms, or extend to fermions and gauge

fields.
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Quantum theory

Quantum theory
1. Hilbert space: Haux = L2[SU(2)2n, dUf ]. States ψ(Uf ).

2. Operators:
Uf are diagonal and Ef are the left invariant vector fields on each SU(2).
The operators Ef−1 turn then out to be the right invariant vector fields!

3. States that solve gauge constraint: SU(2) spin networks on graph ∆∗n

ψjf ιt(Uf ) ≡ 〈Uf |jf , ιt〉 ≡ ⊗f Π(jf )(Uf ) · ⊗t ιt . (1)

4. With a scalar field: Haux = L2[SU(2)2n, dUf ]⊗ L2[Rn], with

ψ(jf , ιt , φt ) ≡ 〈jf , ιt , φt |ψ〉. (2)

5. Quantum Hamiltonian constraint: rewriting it in the Thiemann’s form

1
Vt

Ct =
1
6

X
ff ′f ′′∈t

Tr
h
(Uff ′ − Uf ′f )U

−1
f ′′ [Uf ′′ ,Vt ]

i
∼ 0. (3)
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Classical theory
Quantum theory

Dipole cosmology

Take n = 2 so that ∆2 is formed by two tetrahedra glued along all their faces.

∆2 = ∆∗2 = ��
��s s

Haux = L2[ SU(2)4]⊗ L2[ R2]. Gauge invariant states ψ( jf , ιt , φt ).

Spin networks basis | jf , ιt , φt〉 = | j1, j2, j3, j4, ι1, ι2, φ1, φ2〉.

Dynamics:

8>>>><>>>>:
∂2

∂φ2
1
ψ( jf , ιt , φt ) =

2
κ

X
εf =0,±1

C1
εf ι
′
t

jf ιt
ψ
“

jf +
εj

2
, ι′t , φt

”
,

∂2

∂φ2
2
ψ( jf , ιt , φt ) =

2
κ

X
εf =0,±1

C2
εf ι
′
t

jf ιt
ψ
“

jf +
εj

2
, ι′t , φt

”
.
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Homogeneous and inhomogeneous d.o.f.
Friedmann equation

Born-Oppenheimer approximation

1. d.o.f.: “heavy" (R, pR) (nuclei) and “light" (r , pr ) (electrons).

2. B-O Ansatz: ψ(R, r) = Ψ(R)φ(R; r), where ∂RΦ(R; r) is small.

3. Hamiltonian splits as H(R, r , pR , pr ) = HR(R, pR) + Hr (R; r , pr )

Time independent Schrödinger equation Hψ = Eψ becomes

Hψ = (HR + Hr )ΨΦ = ΦHRΨ + ΨHr Φ = EΨΦ ⇒ HR Ψ
Ψ
− E = −Hr Φ

Φ
. Since

the lhs does not depend on r , each side is equal to a function ρ(R).
Therefore we can write two equations


HRΨ(R) + ρ(R)Ψ(R) = EΨ(R) (1) Schr. eq. for nuclei, with additional term.
Hr Φ(R, r) = ρ(R)Φ(R, r) (2) Schr. eq. for electrons, in the background R.
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Homogeneous and inhomogeneous d.o.f.

Let us apply this idea to dipole cosmology: R → hom d.o.f. r → inhom d.o.f.

Uf = exp Af . ωf : fiducial connection (|ωf | = 1).

1. d.o.f. 
Af = c ωf + af ,
Ef = p ωf + hf .

(
V = p

3
2 ,

{c, p} = 8πG
3 ≡ k .

Also φ1,2 = 1
2 (φ±∆φ), and V1,2 = 1

2 (V ±∆V ).

2. B-O Ansatz: ψ(c, a, φ,∆φ) = Ψ(c, φ)φ(c, φ; a,∆φ).
c ∈ [0, 4π] is a periodic variable. We can therefore expand Ψ(c, φ)

Ψ(c, φ) =
X

integer µ

ψ(µ, φ) eiµc/2.

The basis of states 〈c |µ〉 = eiµc/2 satisfies

p|µ〉 =
k
2
|µ〉 eic |µ〉 = |µ+ 2〉
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Homogeneous and inhomogeneous d.o.f.
Friedmann equation

3. Hamiltonian constraint: Ct = Chom
t + C in

t .

I With some technicalities:8>><>>:
∂2

∂φ2 Ψ(c, φ)− ChomΨ(c, φ)− ρ(c, φ)Ψ(c, φ) = 0, (1)

∂2

∂φ2 φ(c, φ; a,∆φ) + C inhφ(c, φ; a,∆φ) = ρ(c, φ)φ(c, φ; a,∆φ). (2)

(1) Quantum Friedmann equation for the homogeneous d.o.f. (c, φ),
corrected by the energy density ρ(c, φ) of the inhomogeneous modes.

(2) The Schrödinger equation for the inhomogeneous modes in the
background homogeneous cosmology (c, φ). ρ(c, φ) energy eigenvalue.

I At the order zero of the approximation, where we disregard entirely the
effect of the inhomogeneous modes on the homogeneous modes, we
obtain

∂2

∂φ2 Ψ(c, φ) = ChomΨ(c, φ). (3)
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Quantum Friedmann equation

The Hamiltonian constraint

Ct (c, a, p, h) =
1

12

X
ff ′f ′′∈t

Tr̂
`
e−cωf ′−af ′ ecωf−af − e−cωf−af ecωf ′−af ′

´
e−cωf ′f ′′−af ′f ′′ [ecωf ′f ′′+af ′f ′′ , V ± ∆V ]

˜
.

becames in the B-O approximation disregarding the inhomogeneus variables

Chom
t (c, p) =

1
12

X
ff ′f ′′∈t

Tr
h

è−cωf ′ ecωf −e−cωf ecωf ′
´

e−cωf ′′ [ecωf ′′ , p
3
2 ]
i

and writing the holonomies using the Eulero’s formulas

Chom
t =

1
12

X
ff ′f ′′

Tr
h
((cos

c
2

I− 2 sin
c
2

ωf ′ )(cos
c
2

I + 2 sin
c
2

ωf )

− (cos
c
2

I− 2 sin
c
2

ωf )(cos
c
2

I + 2 sin
c
2

ωf ′ ))e−cωf ′′ [ecωf ′′ , p
3
2 ]
i

=
1

12

X
ff ′f ′′

Tr
h“

2 sin
c
2

cos
c
2

(ωf − ωf ′ ) − 4 sin2 c
2

[ωf , ωf ′ ]
”

e−cωf ′′ [ecωf ′′ , p
3
2 ]
i

.
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I Consider the action of the last factor on the state |µ〉

e−cωf ′′ [ecωf ′′ , p
3
2 ]eiµc/2 =

„
−ik

∂

∂c

« 3
2

eiµc/2 − e−cωf ′′

„
−ik

∂

∂c

« 3
2

eic(µ/2−iωf ′′ )

= k
“
µ

3
2 I− (µI− i2ωf ′′)

3
2

”
eiµc/2. (1)

I We can write (µI− i2ωf ′′)
3
2 = α(µ)I + β(µ)ωf ′′

β(µ) = −
q
−2µ(µ2 + 3) + 2(µ2 − 1)

3
2 . (2)

I The only term that survives is

Chom
t eiµc/2 = −1

3
sin2 c

2
β(µ)

X
ff ′

Tr [[ωf , ωf ′ ]ωf ′′ ] eiµc/2

= C β(µ) sin2 c
2

eiµc/2. (3)
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Homogeneous and inhomogeneous d.o.f.
Friedmann equation

I Bringing everything together, the quantum Friedmann equation reads

∂2

∂φ2 Ψ(µ, φ) = C+(µ) Ψ(µ+ 2, φ) + C0(µ) Ψ(µ, φ) + C−(µ) Ψ(µ− 2, φ)

where

C+(µ) = C−(µ) = −1
2

C0(µ) = −kC
κ
µ

3
2

q
−2µ(µ2 + 3) + 2(µ2 − 1)

3
2 .

I This eq. has precisely the structure of the LQC dynamical equation.
I µ is discrete without ad hoc hypotheses, or area-gap argument.
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to conclude...

To be done

1. Immirzi parameter γ.

2. Realistic matter fields.

3. Relation between the ψ(µ, φ) homogeneous
states and the full ψ(jf , ιt , φt ) states in the
spinnetwork basis.

4. Relation to µ̄ quantization scheme.

5. Spinfoam version. Cosmological Regge
calculus (Barrett et al). 1→ 4, 4→ 1
Pachner moves.
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to conclude...

Summary

1. Family of models opening a systematic way
for describing the inhomogeneous d.o.f. in quantum cosmology.

2. Derivation of the structure of LQC as a B-O approximation:
light on LQC/LQG relation.

Comments

1. Does bounce scenario survives? Have quantum inhomogeneous
fluctuations a role in structure formation? and for inflation?

2. ρ(c, φ) term in quantum Friedmann eq.
Physics? Affects cosmological constant?

3. Intuition that near-flat-space dynamics can only be described by many
nodes is misleading. Relevant for the n-point functions calculations.
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