Loop Quantum Cosmology

Francesca Vidotto

Università di Pavia and Centre de Physique Theorique Marseille

QUANTUM GRAVITY IN CRACOW 2 December 19, 2008

< □

Open Issues

LQC provides the most successful physical application of loop gravity, and one of the most promising avenues towards a possible empirical test, but...

- Which is the relationship between LQC and the full LQG? Brunnemann, Fleischhack, Engle, Bojowald, Kastrup, Koslowski...
- 2 Can we describe the full quantum geometry at the bounce?
- **3** Can we include inhomogeneities ? Bojowald, Hernandez, Kagan, Singh, Skirzewski, Martin-Benito, Garay, Mena Marugan...
 - Structure Formation
 - Inflation
 - Dark Energy

→

A strategy to address these questions

Approximations in cosmology

2 Defining the model

- Classical theory
- Quantum theory

3 Born-Oppenheimer approximation

Homogeneous and inhomogeneous d.o.f.

Friedmann equation

→ Ξ →

A strategy to address these questions

Approximations in cosmology

2 Defining the model

- Classical theory
- Quantum theory
- 3 Born-Oppenheimer approximation
 - Homogeneous and inhomogeneous d.o.f.
 - Friedmann equation

A strategy to address these questions

Approximations in cosmology

2 Defining the model

- Classical theory
- Quantum theory

3 Born-Oppenheimer approximation

- Homogeneous and inhomogeneous d.o.f.
- Friedmann equation

The Cosmological Principle

- The dynamics of a homogeneous and isotropic space describes our real universe.
- The effect of the inhomogeneities on the dynamics of its largest scale, described by the scale factor, can be neglected in a first approximation.
- This is not a large scale approximation, because it is supposed to remain valid when the universe was small! It is an expansion in $n \sim \frac{a}{\lambda}$!
- The full theory may be expanded by adding degrees of freedom one by one, starting from the cosmological ones.
- We can define an approximated dynamics of the universe for a finite number of d.o.f..

< □ > < □ >

The Cosmological Principle

- The dynamics of a homogeneous and isotropic space describes our real universe.
- The effect of the inhomogeneities on the dynamics of its largest scale, described by the scale factor, can be neglected in a first approximation.
- This is not a large scale approximation, because it is supposed to remain valid when the universe was small! It is an expansion in $n \sim \frac{a}{\lambda}$!
- The full theory may be expanded by adding degrees of freedom one by one, starting from the cosmological ones.
- We can define an approximated dynamics of the universe for a finite number of d.o.f..

Mode expansion \longleftrightarrow sum over triangulations

- The large scale d.o.f. can be captured by averaging the metric over the simplices of a triangulation formed by n simplices.
- The full theory can be regarded as an expansion for growing *n*. Cosmology corresponds to the lower order where there is only a tetrahedrum: the only d.o.f. is given by the volume.
- Restrict the dynamics to a finite n. Define an approximated dynamics of the universe, inhomogeneous but truncated at a finite number of tertrahedra.
- At fixed *n*, approximate the dynamics by the non-graph changing Hamiltonian constraint. This gives a consistent classical and quantum model for each *n*.

• I > • I > •

Mode expansion \longleftrightarrow sum over triangulations

- The large scale d.o.f. can be captured by averaging the metric over the simplices of a triangulation formed by n simplices.
- The full theory can be regarded as an expansion for growing *n*. Cosmology corresponds to the lower order where there is only a tetrahedrum: the only d.o.f. is given by the volume.
- Restrict the dynamics to a finite *n*. Define an approximated dynamics of the universe, inhomogeneous but truncated at a finite number of tertrahedra.
- At fixed n, approximate the dynamics by the non-graph changing Hamiltonian constraint. This gives a consistent classical and quantum model for each n.

• 同 • • 三 • •

Definition of the classical theory

Oriented triangulation Δ_n of a 3-sphere (*n* tetrahedra *t* and 2*n* triangles *f*)

Variables $\begin{cases} U_{f} \in SU(2), \\ E_{f} = E_{f}^{i}\tau_{i} \in su(2). \end{cases}$ Poisson brackets $\begin{cases} \{U_{f}, U_{f'}\} = 0, \\ \{E_{f}^{i}, U_{f'}\} = \delta_{ff'} \tau^{i}U_{f}, \\ \{E_{f}^{i}, E_{f'}^{i}\} = -\delta_{ff'} \epsilon^{ijk}E_{f}^{k}. \end{cases}$ Decoming $\begin{cases} Gauge \qquad G_{t} \equiv \sum_{f \in I} E_{f} \sim 0, \end{cases}$

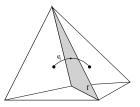
Dynamics $\begin{cases}
Gauge & G_t \equiv \sum_{f \in t} E_f \sim 0, \\
Hamiltonian & C_t \equiv \sum_{ff' \in t} Tr[(U_{ff'} E_{f'} E_f] \sim 0)
\end{cases}$

< 同 > < 回 > < 回 > -

Classical theory Quantum theory

Interpretation

- Cosmological approximation to the dynamics of the geometry of a closed universe.
- (U_t, E_t) average gravitational d.o.f. over a triangulation Δ_n of space:
- U_f: parallel transport of the Ashtekar connection A_a along the link e_f of Δ^{*}_n dual to the f;
- E_f : flux Φ_f of the Ashtekar's electric field E^a across the triangle f, parallel transported to the center of the tetrahedron: $E_f = U_{e_1}^{-1} \Phi_f U_{e_1}$

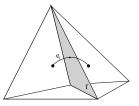


(日)

$$U_{f-1} = U_{f}^{-1}$$
 and $E_{f-1} = -U_{f}^{-1}E_{f}U_{f}$

Interpretation

- Cosmological approximation to the dynamics of the geometry of a closed universe.
- (U_f, E_f) average gravitational d.o.f. over a triangulation Δ_n of space:
- U_f: parallel transport of the Ashtekar connection A_a along the link e_f of Δ^{*}_n dual to the f;
- E_f : flux Φ_f of the Ashtekar's electric field E^a across the triangle f, parallel transported to the center of the tetrahedron: $E_f = U_{e_1}^{-1} \Phi_f U_{e_1}$.



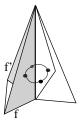
• □ ▶ • □ ▶ • □ ▶

$$U_{f-1} = U_{f}^{-1}$$
 and $E_{f-1} = -U_{f}^{-1}E_{f}U_{f}$

- The constraints approximate the Ashtekar's gauge and Hamiltonian constraint Tr[F_{ab}E^aE^b] ~ 0.
- *C_t*: Non-graph-changing hamiltonian constraint.

The expansion can be performed:

- for small loops whatever were Fab
- but also for large loops if F_{ab} is small.

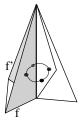


< D > < P > < E > < E</p>

- The constraints approximate the Ashtekar's gauge and Hamiltonian constraint Tr[F_{ab}E^aE^b] ~ 0.
- C_t : Non-graph-changing hamiltonian constraint.

The expansion can be performed:

- for small loops whatever were Fab
- but also for large loops if F_{ab} is small.

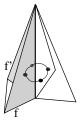


< D > < P > < E > < E</p>

- The constraints approximate the Ashtekar's gauge and Hamiltonian constraint Tr[F_{ab}E^aE^b] ~ 0.
- C_t : Non-graph-changing hamiltonian constraint.

The expansion can be performed:

- for small loops whatever were Fab
- but also for large loops if *F_{ab}* is small.



< ロ > < 同 > < 回 > < 回 >

Adding a scalar field

- Add a variable (ϕ_t, p_{ϕ_t}) . Represents matter, defines an *n*-fingered time.
- Hamiltonian constraint

$$S_t = rac{1}{V_t}C_t + rac{\kappa}{2V_t} \ p_{\phi_t}^2 \sim 0.$$

where

$$V_t = \sum_{ff'f'' \in t} \sqrt{Tr[E_f E_{f'} E_{f''}]}.$$

Ultralocal.

 Easy to add spatial derivative terms, or extend to fermions and gauge fields.

< ロ > < 同 > < 回 > < 回 > < 回 > <

Classical theory Quantum theory

Quantum theory

1 Hilbert space: $H_{aux} = L_2[SU(2)^{2n}, dU_f]$. States $\psi(U_f)$.

2 Operators:

 U_f are diagonal and E_f are the left invariant vector fields on each SU(2). The operators $E_{f^{-1}}$ turn then out to be the right invariant vector fields!

3 States that solve gauge constraint: SU(2) spin networks on graph Δ_n^*

$$\psi_{j\iota_t}(U_f) \equiv \langle U_f | j_f, \iota_t \rangle \equiv \otimes_f \Pi^{(j_f)}(U_f) \cdot \otimes_t \iota_t.$$
(1)

4 With a scalar field: $H_{aux} = L_2[SU(2)^{2n}, dU_f] \otimes L_2[\mathbb{R}^n]$, with

$$\psi(\mathbf{j}_{f}, \iota_{t}, \phi_{t}) \equiv \langle \mathbf{j}_{f}, \iota_{t}, \phi_{t} | \psi \rangle.$$
(2)

< ロ > < 同 > < 回 > < 回 > < 回 > <

5 Quantum Hamiltonian constraint: rewriting it in the Thiemann's form

$$C_{t} = \sum_{ff'f'' \in t} \epsilon^{ff'f''} \operatorname{Tr} \left[U_{ff'} U_{f''}^{-1} [U_{f''}, V_{t}] \right] \sim 0.$$
(3)

Classical theory Quantum theory

Dipole cosmology

Take n = 2 so that Δ_2 is formed by two tetrahedra glued along all their faces.

$$\Delta_2 = \bigwedge \qquad \bigwedge \qquad \Delta_2^* = \bigwedge$$

 $\mathcal{H}_{aux} = L_2[SU(2)^4] \otimes L_2[\mathbb{R}^2].$ Gauge invariant states $\psi(j_t, \iota_t, \phi_t).$ Spin networks basis $|j_t, \iota_t, \phi_t\rangle = |j_1, j_2, j_3, j_4, \iota_1, \iota_2, \phi_1, \phi_2\rangle.$

Dynamics:
$$\begin{cases} \frac{\partial^2}{\partial \phi_1^2} \psi(j_f, \iota_t, \phi_t) &= \frac{2}{\kappa} \sum_{\epsilon_f = 0, \pm 1} C_{1j_f \iota_t}^{\epsilon_f \iota_t'} \psi\left(j_f + \frac{\epsilon_j}{2}, \iota_t', \phi_t\right), \\ \frac{\partial^2}{\partial \phi_2^2} \psi(j_f, \iota_t, \phi_t) &= \frac{2}{\kappa} \sum_{\epsilon_f = 0, \pm 1} C_{2j_f \iota_t}^{\epsilon_f \iota_t'} \psi\left(j_f + \frac{\epsilon_j}{2}, \iota_t', \phi_t\right). \end{cases}$$

< ロ > < 同 > < 回 > < 回 > .

э

Homogeneous and inhomogeneous d.o.f. Friedmann equation

Born-Oppenheimer approximation

- **1** d.o.f.: "heavy" (R, p_R) (nuclei) and "light" (r, p_r) (electrons).
- **2** B-O Ansatz: $\psi(R, r) = \Psi(R)\phi(R; r)$, where $\partial_R \Phi(R; r)$ is small.
- 3 Hamiltonian splits as $H(R, r, p_R, p_r) = H_R(R, p_R) + H_r(R; r, p_r)$

Time independent Schrödinger equation $H\psi = E\psi$ becomes

 $H\psi = (H_R + H_r)\Psi\Phi = \Phi H_R\Psi + \Psi H_r\Phi = E\Psi\Phi \Rightarrow \frac{H_R\Psi}{\Psi} - E = -\frac{H_r\Phi}{\Phi}.$

Since the lhs does not depend on r, each side is equal to a function $\rho(R)$. Therefore we can write two equations

 $\begin{pmatrix} H_R \Psi(R) + \rho(R) \Psi(R) = E \Psi(R) \\ H_r \Phi(R, r) = \rho(R) \Phi(R, r) \end{pmatrix}$

Schr. eq. for nuclei, with additional term. Schr. eq. for electrons, in the background *R*.

< ロ > < 同 > < 回 > < 回 > < 回 > <

Homogeneous and inhomogeneous d.o.f. Friedmann equation

Born-Oppenheimer approximation

- **1** d.o.f.: "heavy" (R, p_R) (nuclei) and "light" (r, p_r) (electrons).
- **2** B-O Ansatz: $\psi(R, r) = \Psi(R)\phi(R; r)$, where $\partial_R \Phi(R; r)$ is small.
- 3 Hamiltonian splits as $H(R, r, p_R, p_r) = H_R(R, p_R) + H_r(R; r, p_r)$

Time independent Schrödinger equation $H\psi = E\psi$ becomes

$$H\psi = (H_R + H_r)\Psi\Phi = \Phi H_R\Psi + \Psi H_r\Phi = E\Psi\Phi \Rightarrow \frac{H_R\Psi}{\Psi} - E = -\frac{H_r\Phi}{\Phi}.$$

Since the lhs does not depend on *r*, each side is equal to a function $\rho(R)$. Therefore we can write two equations

 $\begin{cases} H_R \Psi(R) + \rho(R) \Psi(R) = E \Psi(R) & (1) \\ H_r \Phi(R, r) = \rho(R) \Phi(R, r) & (2) \end{cases}$

Schr. eq. for nuclei, with additional term. Schr. eq. for electrons, in the background *R*.

< ロ > < 同 > < 回 > < 回 > .

Homogeneous and inhomogeneous d.o.f.

Let us apply this idea to dipole cosmology: $R \rightarrow hom d.o.f. r \rightarrow inhom d.o.f.$

$$U_f = \exp A_f$$
. ω_f : fiducial connection ($|\omega_f| = 1$).

1 d.o.f.

$$\begin{cases} A_f = c \omega_f + a_f, \\ E_f = p \omega_f + h_f. \end{cases} \begin{cases} V = p^{\frac{3}{2}}, \\ \{c, p\} = \frac{8\pi G}{3} = 1. \end{cases}$$

Also $\phi_{1,2} = \frac{1}{2}(\phi \pm \Delta \phi)$, and $V_{1,2} = \frac{1}{2}(V \pm \Delta V)$.

2 B-O Ansatz: $\psi(c, a, \phi, \Delta \phi) = \Psi(c, \phi)\phi(c, \phi; a, \Delta \phi)$. $c \in [0, 4\pi]$ is a periodic variable. We can therefore expand $\Psi(c, \phi)$

$$\Psi(c,\phi) = \sum_{\text{integer } \mu} \psi(\mu,\phi) e^{i\mu c/2}.$$

The basis of states $\langle c | \mu
angle = e^{i \mu c/2}$ satisfies

$$\rho|\mu\rangle = \frac{1}{2}|\mu\rangle \qquad e^{ic}|\mu\rangle = |\mu+2\rangle$$

. .

Homogeneous and inhomogeneous d.o.f.

Let us apply this idea to dipole cosmology: $R \rightarrow hom d.o.f. r \rightarrow inhom d.o.f.$

$$U_f = \exp A_f$$
. ω_f : fiducial connection ($|\omega_f| = 1$).

1 d.o.f.

$$\begin{cases}
A_f = c \omega_f + a_f, \\
E_f = p \omega_f + h_f.
\end{cases}
\begin{cases}
V = p^{\frac{3}{2}}, \\
\{c, p\} = \frac{8\pi G}{3} = 1.
\end{cases}$$
Also $\phi_{1,2} = \frac{1}{2}(\phi \pm \Delta \phi)$, and $V_{1,2} = \frac{1}{2}(V \pm \Delta V)$.

2 B-O Ansatz: $\psi(c, a, \phi, \Delta \phi) = \Psi(c, \phi)\phi(c, \phi; a, \Delta \phi)$. $c \in [0, 4\pi]$ is a periodic variable. We can therefore expand $\Psi(c, \phi)$

$$\Psi(\boldsymbol{c},\phi) = \sum_{\text{integer } \mu} \psi(\mu,\phi) \ \boldsymbol{e}^{i\mu \boldsymbol{c}/2}.$$

The basis of states $\langle c | \mu \rangle = e^{i \mu c/2}$ satisfies

$$|p|\mu
angle = rac{1}{2}|\mu
angle \qquad e^{ic}|\mu
angle = |\mu+2
angle$$

- 3. Hamiltonian constraint: $C_t = C_t^{hom} + C_t^{in}$.
 - With some technicalities:

Ś

$$\begin{cases} \frac{\partial^2}{\partial \phi^2} \Psi(c,\phi) - C^{hom} \Psi(c,\phi) - \rho(c,\phi) \Psi(c,\phi) = 0, \qquad (1) \\ \frac{\partial^2}{\partial \phi^2} \phi(c,\phi;a,\Delta\phi) + C^{inh} \phi(c,\phi;a,\Delta\phi) = \rho(c,\phi) \phi(c,\phi;a,\Delta\phi). \end{cases}$$

(1) Quantum Friedmann equation for the homogeneous d.o.f. (c, ϕ) , corrected by the energy density $\rho(c, \phi)$ of the inhomogeneous modes.

(2) The Schrödinger equation for the inhomogeneous modes in the background homogeneous cosmology (c, ϕ) . $\rho(c, \phi)$ energy eigenvalue.

At the order zero of the approximation, where we disregard entirely the effect of the inhomogeneous modes on the homogeneous modes, we obtain

$$\frac{\partial^2}{\partial \phi^2} \Psi(\boldsymbol{c}, \phi) = \boldsymbol{C}^{hom} \Psi(\boldsymbol{c}, \phi).$$
(3)

< ロ > < 同 > < 回 > < 回 > < 回 > <

Homogeneous and inhomogeneous d.o.f. Friedmann equation

< ロ > < 同 > < 回 > < 回 >

Quantum Friedmann equation

The Hamiltonian constraint

$$C_t(\boldsymbol{c},\boldsymbol{a},\boldsymbol{p},\boldsymbol{h}) = \sum_{\text{ff'f''} \in t} \operatorname{Tr} \left[\mathbf{e}^{\boldsymbol{c}\omega_t + \boldsymbol{a}_t} \mathbf{e}^{-\boldsymbol{c}\omega_{t'} - \boldsymbol{a}_{t'}} \mathbf{e}^{-\boldsymbol{c}\omega_{t''} - \boldsymbol{a}_{t''}} \left[\mathbf{e}^{\boldsymbol{c}\omega_{t''} + \boldsymbol{a}_{t''}}, \mathbf{V} \pm \Delta \mathbf{V} \right] \right]$$

becames in the B-O approximation disregarding the inhomogeneus variables

$$C_t^{hom}(\boldsymbol{c},\boldsymbol{p}) = \frac{1}{12} \sum_{\boldsymbol{f} \mid \boldsymbol{f} \mid \boldsymbol{\ell} \mid \boldsymbol{\ell} \in t} \operatorname{Tr} \left[e^{c\omega_{\boldsymbol{f}}} e^{-c\omega_{\boldsymbol{f}}} e^{-c\omega_{\boldsymbol{f}}} \left[e^{c\omega_{\boldsymbol{f}}}, \boldsymbol{p}^{\frac{3}{2}} \right] \right]$$

and writing the holonomies using the Eulero's formulas

$$\begin{split} C_{t}^{hom} &= \sum_{\sharp \ell \ell \ell''} \operatorname{Tr} \left[\left(\cos\left(\frac{c}{2}\right) \mathbb{I} + 2\sin\left(\frac{c}{2}\right) \omega_{\ell} \right) \left(\cos\left(\frac{c}{2}\right) \mathbb{I} - 2\sin\left(\frac{c}{2}\right) \omega_{\ell'} \right) e^{-c \omega_{\ell'} \ell'} \left[e^{c \omega_{\ell'} \ell'}, p^{\frac{3}{2}} \right] \right] \\ &= \sum_{\sharp \ell \ell \ell''} \operatorname{Tr} \left[\left(\cos^{2}\left(\frac{c}{2}\right) \mathbb{I} + 2\sin\left(\frac{c}{2}\right) \cos\left(\frac{c}{2}\right) \left(\omega_{\ell} - \omega_{\ell'} \right) - 4\sin^{2}\left(\frac{c}{2}\right) \left[\omega_{\ell}, \omega_{\ell'} \right] \right) e^{-c \omega_{\ell'} \ell'} \left[e^{c \omega_{\ell'} \ell'}, p^{\frac{3}{2}} \right] \right] \end{split}$$

< ロ > < 同 > < 回 > < 回 > .

Consider the action of the last factor on the state $|\mu\rangle$

$$e^{-c\omega_{\eta''}}[e^{c\omega_{\eta''}},p^{\frac{3}{2}}]e^{i\mu c/2} = \left(-ik\frac{\partial}{\partial c}\right)^{\frac{3}{2}}e^{i\mu c/2} - e^{-c\omega_{\eta''}}\left(-ik\frac{\partial}{\partial c}\right)^{\frac{3}{2}}e^{ic(\mu/2 - i\omega_{\eta''})}$$
$$= k\left(\mu^{\frac{3}{2}}\mathbb{I} - (\mu\mathbb{I} - i2\omega_{\eta''})^{\frac{3}{2}}\right)e^{i\mu c/2}.$$
(1)

• We can write $(\mu \mathbb{I} - i2\omega_{\mathfrak{f}''})^{\frac{3}{2}} = \alpha(\mu)\mathbb{I} + \beta(\mu)\omega_{\mathfrak{f}''}$, compute the coefficients $\alpha(\mu)$ and $\beta(\mu)$ squaring this equation and take $\tilde{\alpha}(\mu) = (\mu/2)^{\frac{3}{2}} - \alpha(\mu)$.

$$C_t^{hom} e^{i\mu c/2} = \left[\tilde{\alpha}(\mu) + \left(\frac{7}{4} \tilde{\alpha}(\mu) + 3^{\frac{1}{4}} 2^{\frac{5}{2}} \beta(\mu) \right) \sin^2 \frac{c}{2} \right] e^{i\mu c/2}$$

< 同 > < 回 > < 回 >

Bringing everything together, the quantum Friedmann equation reads

 $\frac{\partial^2}{\partial \phi^2} \Psi(\mu, \phi) = C^+(\mu) \Psi(\mu + 2, \phi) + C^0(\mu) \Psi(\mu, \phi) + C^-(\mu) \Psi(\mu - 2, \phi)$

where
$$C^{+}(\mu) = C^{-}(\mu) = \frac{\mu^{3/2}}{\kappa\sqrt{2}} \left[-\frac{7}{16} \tilde{\alpha}(\mu) - \sqrt{2\sqrt{3}} \beta(\mu) \right]$$

and $C^{0}(\mu) = \frac{\mu^{3/2}}{\kappa\sqrt{2}} \left[\frac{11}{8} \tilde{\alpha}(\mu) + 2\sqrt{2\sqrt{3}} \beta(\mu) \right].$

This eq. has precisely the structure of the LQC dynamical equation.

 \blacksquare μ is discrete without ad hoc hypotheses, or area-gap argument.

Summary

- Family of models opening a systematic way for describing the inhomogeneous d.o.f. in quantum cosmology.
- 2 Derivation of the structure of LQC as a B-O approximation: light on LQC/LQG relation.

Comments

- Does bounce scenario survives?
 How do quantum inhomogeneous fluctuations affect structure formation?
 and for inflation?
- 2 ρ(c, φ) term in quantum Friedmann eq. Physics? Affects cosmological constant?
- Intuition that near-flat-space dynamics can *only* be described by many nodes is misleading. Relevant for the *n*-point functions calculations.

< ロ > < 同 > < 回 > < 回 >

to conclude...

1 Immirzi parameter γ .

To be done

- Realistic matter fields.
- Relation between the ψ(μ, φ) homogeneous states and the full ψ(j_t, ι_t, φ_t) states in the spinnetwork basis.
- 4 Relation to $\bar{\mu}$ quantization scheme.
- Spinfoam version. Cosmological Regge calculus (Barrett, Williams et al).
 1 → 4, 4 → 1 Pachner moves.

(日)