Spinfoam and Cosmology

Francesca Vidotto

HISTORY OF THE MAIN IDEAS

LOOP QUANTUM COSMOLOGY

- (canonical) LQC

Input:
 - $\mathrm{SU}(2)$ group variables

- Minimal area gap
- Hamiltonian constraint
- Holonomy corrections
- Inverse-volume corrections

Output: - Singularity resolution

- No need to violate the SEC
- Modified Friedmann equations
- Wave-packet non-singular trajectories
- Modified Muhanov-Sasaki equations
- Predictions for the CMB
- $\frac{\dot{a}^{2}}{a^{2}}=\frac{8 \pi G}{3} \rho\left(1-\frac{\rho}{\rho_{c}}\right)$
- $v^{\prime \prime}-\left(1-2 \frac{\rho}{\rho_{c}}\right) \nabla^{2} v-\frac{z^{\prime \prime}}{z} v=0$
- Barrau, Cailleteau, Grain, Mielczarek, Linsefors
- Agullo, Ashtekar, Nelson
- Ashtekar, Pawlowski, Singh

- (covariant) LQG

Input:

- Dynamics of quanta of spacetime
- Group variables on graphs
- Lorentzian signature
- Local product of interaction vertex
- Feynman rules

Output: ■ UV finite

- Physical cutoff at the Planck scale
- IR finite
- Cosmological const. = q-deformation
- GR recover in the semiclassical limit!
- Easy to couple YM fields
- COSMOLOGY
- Cosmology provides the (only?) ground to check the theory
- A quantum cosmology based on the full quantum theory
- Possibility to explore the deep quantum regime in the early universe
- Possibility to include quantum fluctuations naturally

prejudice 1

"in quantum gravity spacetime should be quantized"

QUANTA OF SPACE

- It is a theory about quanta of spacetime
- Each quantum is Lorentz invariant
- The states are boundary states at fixed time
- The physical phase space is spanned by $\mathrm{SU}(2)$ group variables

- Abstract graphs: $\Gamma=\{\mathrm{N}, \mathrm{L}\}$
- Group variables: $\left\{\begin{array}{l}h_{l} \in S U(2) \\ \vec{L}_{l} \in \operatorname{su}(2)\end{array}\right.$
- Graph Hilbert space: $\quad \mathcal{H}_{\Gamma}=L_{2}\left[S U(2)^{L} / S U(2)^{N}\right]$

- The space \mathcal{H}_{Γ} admits a basis $\left|\Gamma, j_{\ell}, v_{n}\right\rangle$
- Gauge invariant operator $G_{l l^{\prime}}=\vec{L}_{l} \cdot \vec{L}_{l^{\prime}} \quad$ with $\sum_{l \in n} G_{l l^{\prime}}=0$

Penrose's spin-geometry theorem (1971), and Minkowski theorem (1897)

- h_{l} "Holonomy of the Ashtekar-Barbero connection along the link"
- $\vec{L}_{l}=\left\{L_{l}^{i}\right\}, i=1,2,3 \quad \mathrm{SU}(2)$ generators $\left.\quad L^{i} \psi(h) \equiv \frac{d}{d t} \psi\left(h e^{t \tau_{i}}\right)\right|_{t=0}$
gravitational field operator (tetrad)

$$
\left.L^{i} \psi(h) \equiv \frac{d}{d t} \psi\left(h e^{t \tau_{i}}\right)\right|_{t=0}
$$

REPRESENTING GEMETRIES

- Composite operators:
- Area:

Volume: $\quad V_{R}=\sum_{n \in R}^{l \in \Sigma} V_{n}, \quad V_{n}^{2}=\frac{2}{9}\left|\epsilon_{i j k} L_{l}^{i} L_{l^{\prime}}^{j} L_{l^{\prime \prime}}^{k}\right|$.

- Angle: $\quad L_{l}^{i} L_{l^{\prime}}^{i}$
- Geometry is quantized:
- eigenvalues are discrete
- the operators do not commute
- quantum superposition \rightarrow coherent states

Quantum states of space, rather than states on space.

prejudice 2

"the theory should be so simple and short that it would fit on a tshirt"

$(\mathcal{H}, \mathcal{A}, \mathcal{W})$ defines a background independent quantum field theory

SPINFOAM AMPLITUDES

Probability amplitude $P(\psi)=|\langle W \mid \psi\rangle|^{2}$
Amplitude associated to a state ψ of a boundary of a 4 d region

3d boundary

boundary graph

a spin network history

$\sigma:$ spinfoam

- Superposition principle $\quad\langle W \mid \psi\rangle=\sum_{\sigma} W(\sigma)$
- Locality: vertex amplitude $W(\sigma) \sim \prod W_{v}$.
- Lorentz covariance

$$
W_{v}=\left(P_{S L(2, \mathbb{C})} \circ Y_{\gamma} \psi_{v}\right)(\mathbb{I})
$$

COVARIANT LQG DYNAMICS

2-complex \mathcal{C} (vertices, edges, faces)

- Transition amplitudes $\quad W_{\mathcal{C}}\left(h_{l}\right)=\int_{S U(2)} d h_{v f} \prod_{f} \delta\left(h_{f}\right) \prod_{v} A\left(h_{v f}\right) \quad h_{f}=\prod_{v} h_{v f}$
- Vertex amplitude

$$
A\left(h_{f}\right)=\sum_{j_{f}} \int_{S L(2, \mathbb{C})} d g_{e} \prod_{f}\left(2 j_{f}+1\right) T r_{j}\left[h_{f} Y_{\gamma}^{\dagger} g_{e} g_{e^{\prime}}^{-1} Y_{\gamma}\right]
$$

- Simplicity map

$$
\begin{aligned}
Y_{\gamma}: \mathcal{H}_{j} & \rightarrow \mathcal{H}_{j, \gamma j} \\
|j ; m\rangle & \mapsto|j, \gamma(j+1) ; j, m\rangle
\end{aligned}
$$

$q_{i j}^{\prime}$
the universe at "time" t '
$q_{i j}$
the universe at "time" t

$$
W\left(q_{i j}^{\prime}, q_{i j}\right) \sim \int_{\partial g=q^{\prime}, q} D q e^{i S}
$$

- Fixed graph with N of nodes. This defines an approximated kinematics of the universe, inhomogeneous but truncated at a finite number of cells.
- The graph captures the large scale d.o.f. obtained averaging the metric over the faces of a cellular decomposition formed by N cells.
- The full theory can be regarded as an expansion for growing N.

FRW cosmology corresponds to the lower order where there is only a regular cellular decomposition: the only d.o.f. is given by the volume.

- Coherent states $\left|H_{\ell}\right\rangle$ describing a homogeneous and isotropic geometry:

$$
z=\xi_{\ell}+i \eta_{\ell} \quad \longrightarrow \quad z=\alpha \dot{R}+i \beta R^{2} \quad \forall \ell
$$

	$W\left(q_{i j}^{\prime}, q_{i j}\right) \sim \int_{\partial g=q^{\prime}, q} D q e^{i S}$
$q_{i j}^{\prime}$	
the universe at "time" t '	Fixed graph with N of nodes. This defines an approximated kinematics of the universe, inhomogeneous but truncated at a finite number of cells.
$q_{i j}$ the universe at "time" t	The graph captures the large scale d.o.f. obtained averaging the metric over the faces of a cellular decomposition formed by N cells.

- The full theory can be regarded as an expansion for growing N.

FRW cosmology corresponds to the lower order where there is only a regular cellular decomposition: the only d.o.f. is given by the volume.

- Coherent states $\left|H_{\ell}\right\rangle$ describing a homogeneous and isotropic geometry:

$$
z=\xi_{\ell}+i \eta_{\ell} \quad \longrightarrow \quad z=\alpha \dot{R}+i \beta R^{2} \quad \forall \ell
$$

	$W\left(q_{i j}^{\prime}, q_{i j}\right) \sim \int_{\partial g=q^{\prime}, q} D q e^{i S}$
$q_{i j}^{\prime}$	
the universe at "time" t'	- Fixed graph with N of nodes. This defines an approximated kinematics of the universe, inhomogeneous but truncated at a finite number of cells.
$q_{i j}$ the universe at "time" t	The graph captures the large scale d.o.f. obtained averaging the metric over the faces of a cellular decomposition formed by N cells.

- The full theory can be regarded as an expansion for growing N.

FRW cosmology corresponds to the lower order where there is only a regular cellular decomposition: the only d.o.f. is given by the volume.

- Coherent states $\left|H_{\ell}\right\rangle$ describing a homogeneous and isotropic geometry:

$$
z=\xi_{\ell}+i \eta_{\ell} \quad \longrightarrow \quad z=\alpha \dot{R}+i \beta R^{2} \quad \forall \ell
$$

A REMINDER OF THE CLASSICAL THEORY

Tetrads

$$
g_{a b} \rightarrow e_{a}^{i} \quad g_{a b}=e_{a}^{i} e_{b}^{i} \quad e=e_{a} d x^{a} \in \mathbb{R}^{(1,3)}
$$

Spin connection

$$
\omega=\omega_{a} d x^{a} \in \operatorname{sl}(2, \mathbb{C})
$$

$$
\omega(e): \quad d e+\omega \wedge e=0
$$

GR action

$$
\begin{aligned}
& S[e, \omega]=\int e \wedge e \wedge F^{*}[\omega]+\frac{1}{\gamma} \int e \wedge e \wedge F[\omega] \quad \text { (Holst term) } \\
& S[e, \omega]=\int B[e] \wedge F[\omega]
\end{aligned}
$$

Canonical variables

$$
\omega, \quad B=(e \wedge e)^{*}+\frac{1}{\gamma}(e \wedge e)
$$

On the boundary

$$
n_{i}=e_{i}^{a} n_{a} \quad n_{i} e^{i}=0 \quad S L(2, \mathbb{C}) \rightarrow S U(2)
$$

$$
B \rightarrow\left(K=n B, L=n B^{*}\right)
$$

Linear simplicity constraint $\quad \vec{K}+\gamma \vec{L}=0$

$S L(2, \mathbb{C})$ UNITARY IRRIDUCIBLE REPRESENTATIONS

$$
\begin{aligned}
& S U(2) \text { unitary representations: } \quad 2 j \in Z \quad|j ; m\rangle \in \mathcal{H}_{j} \\
& S L(2, \mathbb{C}) \text { unitary representations: } \quad 2 k \in N, \quad \nu \in R \quad|k, \nu ; j, m\rangle \in \mathcal{H}_{k, \nu}=\bigoplus_{j=k, \infty} \mathcal{H}_{k, \nu}^{j} \\
& \gamma \text {-simple representations: } \quad \nu=\gamma(k+1) \\
& S U(2) \rightarrow S L(2, \mathbb{C}) \text { map: } \quad Y_{\gamma}: \quad \mathcal{H}_{j} \rightarrow \mathcal{H}_{j, \gamma j} \\
& |j ; m\rangle \mapsto|(j, \gamma(j+1)) ; j, m\rangle \\
& \text { Image of } Y_{\gamma}: \quad j=k \quad \text { Langlands classification:Vogan's minimal } k \text {-type) }
\end{aligned}
$$

prejudice 3

"quantum gravity
should remove the infinities of general relativity"

Spinfoam dynamics:

$$
\vec{K}+\gamma \vec{L}=0
$$

Gauge-fix the tetrads to be diagonal: Lorentzian area $A=\int_{\mathcal{R}} \gamma K^{z}=\int_{\mathcal{R}} L^{z}$

$$
A_{\min }=4 \pi G \hbar \quad a_{\max }=\sqrt{\frac{1}{8 \pi G \hbar}} \quad \ell_{\max }=\sqrt{8 \pi G \hbar}
$$

- Wedge amplitude:

$$
\begin{aligned}
W(\eta, h) & =\sum_{j}(2 j+1) \operatorname{Tr} r_{j}\left[Y^{\dagger} e^{i \eta K_{z}} Y h\right] \\
& =\sum_{j}(2 j+1) \operatorname{Tr} r_{j}\left[e^{i \eta \gamma L_{z}} h\right] \\
& =\sum_{j, m}(2 j+1) e^{i \eta \gamma m} D^{(j)}(h)_{m m}
\end{aligned}
$$

- In the coherent-state basis :

$$
W(\eta, j)=e^{i \eta 8 \pi G \hbar \gamma j}
$$

- Minimal distance from the horizon: $\quad \ell=R / \dot{R}$
- Maximal acceleration: $\quad a \sim \sqrt{\ddot{R} / R}$
- Maximal energy density:

$$
\left.\rho_{\max } \sim \frac{3}{8 \pi G} \frac{\dot{R}^{2}}{R^{2}}\right|_{\max }=\frac{3}{8 \pi G} \ell_{\min }^{-2}=\frac{3}{\hbar(8 \pi G)^{2}}
$$

- SPINFOAM: singularity are avoided! [Rovelli, FV]
- Minimal volume - classically the conjugate variable is the Hubble rate
- LQC: holonomy corrections \rightarrow bounded Hubble rate! effective eqs: $\ell_{P} \dot{R} / R \rightarrow \sin \left(\ell_{P} \dot{R} / R\right)$
- Strong singularity are solved: big bang, big crunch, big rip... [Singh, FV]
- Maximal acceleration: it may have implications for weak-singularity resolution
- No energy condition is violated. It is a pure quantum effect.
- Early perturbative quantum gravity: non-renormalizability
- Local: observables at arbitrarily small regions in a continuous manifold
- Infinite renormalization group
- Cut-off: it is a mathematical trick
- Perturbations methods are some kind of approximation.
- Infinities: we perturb around points that are not really good.
- Non-perturbative approach:presence of a fundamental scale!
- Minimal area $a_{o}=8 \pi G \hbar \gamma \frac{\sqrt{3}}{2} \rightarrow$ natural UV cut-off
- Cosmological constant $\Lambda>0 \rightarrow$ natural IR cut-off \longrightarrow horizon

Han, Fairbairn, Moesburger, 2011
see also Bianchi, Rovelli 20111

$$
\phi_{\text {min }}=\sqrt{\Lambda} \ell_{P}
$$

- Planck length + horizon $=$ minimal angular resolution $j_{\max }$
- Mathematically a fuzzy spheres: spherical harmonics with $S U(2)_{q}$
- A maximum angular momentum characterizes the representations of $S U(2)_{q}$

$$
q=e^{i 2 \pi / k} \quad \text { with } \mathrm{k} \sim 2 j_{\max }
$$

- The local rotational symmetry is better described by $S U(2)_{q}$ than by $\mathrm{SU}(2)$, with $\quad q=e^{i \Lambda l_{P}^{2}}$
- Physically: non-commutativity, fuzziness of any angular function, impossibility of resolving small dihedral angles.
- Loop gravity: ϕ is an operator with a discrete spectrum.
- Best angular resolution: $\quad \phi_{\min }=\sqrt{2 / j_{\max }} \quad$ with $\quad j_{\max } \sim \frac{1}{l_{P}^{2} \Lambda} \quad$ (Major'99)

	Exact quantum gravity transition amplitudes $W\left(h_{l}\right)$	$\xrightarrow{\hbar \rightarrow 0}$	General relativity Hamilton function $S(q)$
	8 \uparrow 0		8 \uparrow \triangleleft
	LQG transition amplitudes $W_{\mathcal{C}}\left(h_{l}\right)$	$\xrightarrow{\hbar \rightarrow 0}$	Regge Hamilton function $S_{\Delta}\left(l_{i_{b}}\right)$
	Classical limit		

- No critical point
- No infinite renormalization
- Physical scale: Planck length
- Viability of the expansion:
first radiative corrections are logarithmic (Riello)
- Regime of validity of the expansion:
$L_{\text {Planck }} \ll L \ll \sqrt{1 / P}$

prejudice 4

"quantum gravity
should have general relativity as its classical limit"

LARGE DISTANCE LIMIT

Two-complex \mathcal{C}
(dual to a cellular decomposition)

$$
Z=\sum_{j_{f}, i_{e}} \prod_{f} d_{j_{f}} \prod_{v} A\left(j_{f}, i_{e}\right)
$$

Theorem :
[Barrett, Pereira, Hellmann,
Gomes, Dowdall, Fairbairn 2010]
[Freidel Conrady 2008,
Bianchi, Satz 2006,
Magliaro Perini, 2011]

Theorem :
[Han 2012]

$$
A\left(j_{f}, i_{e}\right) \underset{j \gg 1}{\sim} e^{i S_{\text {Regge }}}+e^{-i S_{\text {Regge }}}
$$

$$
W_{\mathcal{C}} \xrightarrow[j \gg 1]{ } e^{i S_{\Delta}} \quad Z_{\mathcal{C}} \xrightarrow[C \rightarrow \infty]{ } \int D g e^{i S[g]}
$$

$$
A^{q}\left(j_{f}, i_{e}\right) \underset{j \gg 1, q \sim 1}{\sim} \quad e^{i S_{\text {Regge }}^{\Lambda}}+e^{-i S_{\text {Regge }}^{\Lambda}} \quad q=e^{\Lambda \hbar G}
$$

gravity

$$
R_{\mu \nu}-\frac{1}{2} g_{\mu \nu}=8 \pi G T_{\mu \nu}
$$

$$
d s^{2}=d t^{2}-a^{2}(t) d^{3} \vec{x}
$$

+ perturbations

APPLICATIONS: SPINFOAM COSMOLOGY

canonical / covariant
quantization

$$
\begin{gathered}
\text { gravity } \\
R_{\mu \nu}-\frac{1}{2} g_{\mu \nu}=8 \pi G T_{\mu \nu} \\
d s^{2}=d t^{2}-a^{2}(t) d^{3} \vec{x} \\
+ \text { perturbations }
\end{gathered}
$$

APPLICATIONS: SPINFOAM COSMOLOGY

canonical / covariant
quantization
gravity
$R_{\mu \nu}-\frac{1}{2} g_{\mu \nu}=8 \pi G T_{\mu \nu}$
symmetry
reduction
cosmology
$d s^{2}=d t^{2}-a^{2}(t) d^{3} \vec{x}$

+ perturbations
\qquad
\longrightarrow
\square
quantum
cosmology

APPLICATIONS: SPINFOAM COSMOLOGY

canonical / covariant
quantization

gravity	
$R_{\mu \nu}-\frac{1}{2} g_{\mu \nu}=8 \pi G T_{\mu \nu}$	
quantum gravity seduction cosmology	$W_{v}=\left(P_{S L(2, \mathbb{C})} \circ Y_{\gamma} \psi_{v}\right)(\mathbb{I})$
$d s^{2}=d t^{2}-a^{2}(t) d^{3} \vec{x}$	
+ perturbations	

$$
H=\text { const }\left(a \dot{a}^{2}-\frac{\Lambda}{3} a^{3}\right)=0 \quad \dot{a}= \pm \sqrt{\frac{\Lambda}{3}} a
$$

$$
G_{\ell}=G_{n_{s}} G_{n_{t}}^{-1}
$$

classical dynamics

$$
H=\operatorname{const}\left(a \dot{a}^{2}-\frac{\Lambda}{3} a^{3}\right)=0 \quad \dot{a}= \pm \sqrt{\frac{\Lambda}{3}} a
$$

$$
G_{\ell}=G_{n_{s}} G_{n_{t}}^{-1}
$$

- classical dynamics

$$
S_{H}=\text { const }\left.\int \mathrm{d} t\left(a \dot{a}^{2}+\frac{\Lambda}{3} a^{3}\right)\right|_{\dot{a}= \pm \sqrt{\frac{\Lambda}{3}}{ }^{a}}=\text { const } \frac{2}{3} \sqrt{\frac{\Lambda}{3}}\left(a_{f}^{3}-a_{i}^{3}\right)
$$

$$
G_{\ell}=G_{n_{s}} G_{n_{t}}^{-1}
$$

$1^{\text {st_ORDER }}$ FARCTORIZATION

- classical dynamics

$$
S_{H}=\text { const }\left.\int \mathrm{d} t\left(a \dot{a}^{2}+\frac{\Lambda}{3} a^{3}\right)\right|_{\dot{a}= \pm \sqrt{\frac{\Lambda}{3}}{ }^{a}}=\text { const } \frac{2}{3} \sqrt{\frac{\Lambda}{3}}\left(a_{f}^{3}-a_{i}^{3}\right)
$$

- quantum dynamics

$$
W\left(a_{f}, a_{i}\right)=e^{\frac{i}{\hbar} S_{H}\left(a_{f}, a_{i}\right)}=W\left(a_{f}\right) \overline{W\left(a_{i}\right)}
$$

$$
G_{\ell}=G_{n_{s}} G_{n_{t}}^{-1}
$$

- classical dynamics

$$
S_{H}=\text { const }\left.\int \mathrm{d} t\left(a \dot{a}^{2}+\frac{\Lambda}{3} a^{3}\right)\right|_{\dot{a}= \pm \sqrt{\frac{\Lambda}{3}} a}=\text { const } \frac{2}{3} \sqrt{\frac{\Lambda}{3}}\left(a_{f}^{3}-a_{i}^{3}\right)
$$

- quantum dynamics

$$
W\left(a_{f}, a_{i}\right)=e^{\frac{i}{\hbar} S_{H}\left(a_{f}, a_{i}\right)}=W\left(a_{f}\right) \overline{W\left(a_{i}\right)}
$$

- loop dynamics

$$
\left\langle W \mid \psi_{H_{\left(z, z^{\prime}\right)}}\right\rangle=W\left(z, z^{\prime}\right)=W(z) \overline{W\left(z^{\prime}\right)}
$$

$$
G_{\ell}=G_{n_{s}} G_{n_{t}}^{-1}
$$

- classical dynamics

$$
S_{H}=\text { const }\left.\int \mathrm{d} t\left(a \dot{a}^{2}+\frac{\Lambda}{3} a^{3}\right)\right|_{\dot{a}= \pm \sqrt{\frac{\Lambda}{3}} a}=\text { const } \frac{2}{3} \sqrt{\frac{\Lambda}{3}}\left(a_{f}^{3}-a_{i}^{3}\right)
$$

- quantum dynamics

$$
W\left(a_{f}, a_{i}\right)=e^{\frac{i}{\hbar} S_{H}\left(a_{f}, a_{i}\right)}=W\left(a_{f}\right) \overline{W\left(a_{i}\right)}
$$

- loop dynamics

$$
\left\langle W \mid \psi_{\left.H_{\left(z, z^{\prime}\right.}\right)}\right\rangle=W\left(z, z^{\prime}\right)=W(z) \overline{W\left(z^{\prime}\right)}
$$

$$
=W_{0}\left(h_{\ell}, h_{\ell^{\prime}}\right)=\delta_{\Gamma_{\ell}}\left(h_{\ell}, h_{\ell^{\prime}}\right)
$$

$$
G_{\ell}=G_{n_{s}} G_{n_{t}}^{-1}
$$

- classical dynamics

$$
S_{H}=\text { const }\left.\int \mathrm{d} t\left(a \dot{a}^{2}+\frac{\Lambda}{3} a^{3}\right)\right|_{\dot{a}= \pm \sqrt{\frac{\Lambda}{3}} a}=\text { const } \frac{2}{3} \sqrt{\frac{\Lambda}{3}}\left(a_{f}^{3}-a_{i}^{3}\right)
$$

- quantum dynamics

$$
W\left(a_{f}, a_{i}\right)=e^{\frac{i}{\hbar} S_{H}\left(a_{f}, a_{i}\right)}=W\left(a_{f}\right) \overline{W\left(a_{i}\right)}
$$

- loop dynamics

$$
\begin{aligned}
& \left\langle W \mid \psi_{H_{\left(z, z^{\prime}\right)}}\right\rangle=W\left(z, z^{\prime}\right)=W(z) \overline{W\left(z^{\prime}\right)} \\
& W_{C_{\infty}}\left(z^{\prime}, z\right)=\int h_{\ell} \int h_{\ell}^{\prime} \overline{\psi_{z^{\prime}}\left(h_{\ell}^{\prime}\right)} W_{1}\left(h_{\ell}^{\prime}, h_{\ell}\right) \psi_{z}\left(h_{\ell}^{\prime}\right)
\end{aligned}
$$

$$
G_{\ell}=G_{n_{s}} G_{n_{t}}^{-1}
$$

- classical dynamics

$$
S_{H}=\text { const }\left.\int \mathrm{d} t\left(a \dot{a}^{2}+\frac{\Lambda}{3} a^{3}\right)\right|_{\dot{a}= \pm \sqrt{\frac{\Lambda}{3}} a}=\text { const } \frac{2}{3} \sqrt{\frac{\Lambda}{3}}\left(a_{f}^{3}-a_{i}^{3}\right)
$$

- quantum dynamics

$$
W\left(a_{f}, a_{i}\right)=e^{\frac{i}{\hbar} S_{H}\left(a_{f}, a_{i}\right)}=W\left(a_{f}\right) \overline{W\left(a_{i}\right)}
$$

- loop dynamics

$$
\left\langle W \mid \psi_{\left.H_{\left(z, z^{\prime}\right.}\right)}\right\rangle=W\left(z, z^{\prime}\right)=W(z) \overline{W\left(z^{\prime}\right)}
$$

order (1)

$$
\begin{aligned}
& W_{\mathcal{C}_{\infty}}\left(z^{\prime}, z\right)=\int h_{\ell} \int h_{\ell}^{\prime} \overline{\psi_{z^{\prime}}\left(h_{\ell}^{\prime}\right)} W_{1}\left(h_{\ell}^{\prime}, h_{\ell}\right) \psi_{z}\left(h_{\ell}^{\prime}\right) \\
& W_{1}\left(h_{\ell}^{\prime}, h_{\ell}\right)=\int_{S L(2, \mathbb{C})} \prod_{n=1}^{N-1} d G_{n} \prod_{\ell=1}^{L} P\left(h_{\ell}, G_{\ell}\right) P\left(h_{\ell}^{\prime}, G_{\ell}^{\prime}\right)
\end{aligned}
$$

$$
G_{\ell}=G_{n_{s}} G_{n_{t}}^{-1}
$$

EVALUATION OF THE AMPLITUDE

$$
W(z)=\sum_{j_{\ell}} \prod_{\ell=1}^{L} \frac{1}{\alpha^{3} \sqrt{\operatorname{det} \operatorname{Hess}\left(j_{\ell}\right)}}\left(2 j_{\ell}+1\right) e^{-2 t \hbar j_{\ell}\left(j_{\ell}+1\right)-i z j_{\ell}} e^{-\frac{1}{2} i j_{\ell} \theta}
$$

$$
\theta(\gamma K+1)-\theta=0
$$

- Gaussian sum peaked at j_{o} for all j_{ℓ}

$$
j \sim j_{o}+\delta j
$$

- max (real part of the exponent) gives where the gaussian is peaked; $\quad j_{o} \sim \operatorname{Im} \tilde{z} / 4 t \hbar$
- imaginary part of the exponent $=2 \mathrm{k} \pi$ gives where the gaussian is not suppressed. $R e \tilde{z}=0$
- We obtain Minkowski space!

$$
W(z)=\left(\sqrt{\frac{\pi}{t}} e^{-\frac{z^{2}}{8 t \hbar}} 2 j_{o}\right)^{L} \frac{N_{\Gamma}}{j_{o}^{3}}
$$

EVALUATION OFTHE AMPLITUDE

$$
W(z)=\frac{1}{\alpha^{3} \sqrt{\operatorname{det} \operatorname{Hess}\left(j_{\ell}\right)}} \quad\left(\sum_{j_{\ell}}\left(2 j_{\ell}+1\right) e^{-2 t \hbar j_{\ell}\left(j_{\ell}+1\right)-i \tilde{z} j_{\ell}}\right)^{L}
$$

- Gaussian sum peaked at j_{o} for all j_{ℓ}

$$
j \sim j_{o}+\delta j
$$

- max (real part of the exponent) gives where the gaussian is peaked; $\quad j_{o} \sim \operatorname{Im} \tilde{z} / 4 t \hbar$
- imaginary part of the exponent $=2 \mathrm{k} \pi$ gives where the gaussian is not suppressed. $R e \tilde{z}=0$
- We obtain Minkowski space!

$$
W(z)=\left(\sqrt{\frac{\pi}{t}} e^{-\frac{z^{2}}{8 t \hbar}} 2 j_{o}\right)^{L} \frac{N_{\Gamma}}{j_{o}^{3}}
$$

DE SITTER SPACE

$$
\begin{array}{r}
Z_{\mathcal{C}}=\sum_{j_{f}, \mathrm{v}_{e}} \prod_{f}(2 j+1) \prod_{e} e^{i \lambda \mathrm{v}_{e}} \prod_{v} A_{v}\left(j_{f}, \mathrm{v}_{e}\right) \\
W(z)=\sum_{j}(2 j+1) \frac{N_{\Gamma}}{j^{3}} e^{-2 t \hbar j(j+1)-i z j-i \lambda \mathrm{v}_{o} j^{\frac{3}{2}}} \\
i \lambda \mathrm{v}_{o} j^{\frac{3}{2}} \sim i \lambda \mathrm{v}_{o} j_{o}^{\frac{3}{2}}+\frac{3}{2} i \lambda \mathrm{v}_{o} j_{o}^{\frac{1}{2}} \delta j
\end{array}
$$

- the gaussian is peaked on $\quad j_{o}=\frac{\operatorname{Im}(z)}{4 t \hbar}$
- the gaussian is not suppressed for $\operatorname{Re}(z)+\lambda \mathrm{v}_{o} j^{\frac{1}{2}}=0$.
$\frac{\operatorname{Re}(z)^{2}}{\operatorname{Im}(z)}=\frac{\lambda^{2} \mathrm{v}_{o}^{2}}{4 t \hbar} \longrightarrow\left(\frac{\dot{a}}{a}\right)^{2}=\frac{\Lambda}{3}$

$$
\Lambda=\text { const } \lambda^{2} G^{2} \hbar^{2}
$$

TO CONCLUDE

- "in quantum gravity spacetime should be quantized"

The theory predicts the existence of quanta of space.
Minimal eigenvalue in the spectrum of geometrical quantities.
Lorentz invariance is a basic ingredient, it is preserved.

- "the theory should be so simple and short that it would fit on a tshirt"

The theory is defined by the triple: Hilbert space, observable algebra and transition amplitudes. All the objects are well defined.
The amplitudes can be computed with cosmological states (SPINFOAM COSMOLOGY)

- "quantum gravity should remove the infinities of general relativity"

The amplitudes are UV and IR finite: Planck length and Λ are fundamental.
Renormalization: first radiative corrections are logarithmic.
In cosmology, Spinfoam support and extend the resolution of cosmological singularities.

- "quantum gravity should have general relativity as its classical limit"

The boundary states represent classical geometries.
The classical limit of the vertex amplitude gives the Regge Hamilton function. In cosmology, Friedmann equations for Minkowski and deSitter are recovered.

Merci!

