Spinfoam and Cosmology

Francesca Vidotto

APC - Paris June 27th, 2013

HISTORY OF THE MAIN IDEAS

old quantum gravity		1957	$Z(q) = \int_{\partial a=a} Dg \ e^{iS_{EH}[g]}$	[Misner]	
	-	1961	Regge calculus \rightarrow truncation of GR	[Regge]	Curvature
	-	1967	W-DeW equation	[Wheeler, DeWitt]	
		1971	Spin-geometry theorem \rightarrow spin network	[Penrose]	
old LQG		1988	Complex variables for GR	[Ashtekar]	
		1988	Loop solutions to WdW eq \rightarrow LQG	[Rovelli-Smolin]	
	-	1994	Spectral problem for geometrical operators \rightarrow	spin network	
		1996	Covariant dynamics \rightarrow spinfoams	[Reisenberger-Rov	elli]
■ 1999 LQC [Bojowald]					
new results		2008	Covariant dynamics of LQG	[E	Engle-Pereira-Livine-Rovelli, Freidel-Krasnov]
		2010	Asymptotic of the new dynamics \rightarrow recovery of	f Regge action [C	Conrady-Freidel, Barrett et al, Bianchi]
		2011	Cosmological constant \rightarrow finiteness of the trans	sition amplitudes	Han, Fairbairn-Moesburger]
	[Bianchi-Rovelli-FV]				

Spinfoam & Cosmology

LOOP QUANTUM COSMOLOGY

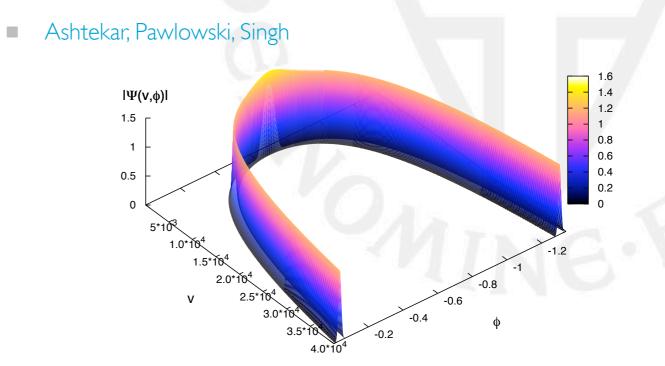
(canonical) LQC

Input:

- SU(2) group variables
 - Minimal area gap
- Hamiltonian constraint
 - Holonomy corrections
 - Inverse-volume corrections

Output:

- Singularity resolution
 - No need to violate the SEC
- Modified Friedmann equations
 - Wave-packet non-singular trajectories
- Modified Muhanov-Sasaki equations
 - Predictions for the CMB



$\dot{a}^2 = \frac{8\pi G}{3} \rho \left(1 - \frac{\rho}{\rho_c}\right)$ $v'' - \left(1 - 2\frac{\rho}{\rho_c}\right) \nabla^2 v - \frac{z''}{z}v = 0$

- Barrau, Cailleteau, Grain, Mielczarek, Linsefors
- Agullo, Ashtekar, Nelson

Spinfoam & Cosmology

(covariant) LQG

Input:

- Dynamics of quanta of spacetime
 - Group variables on graphs
- Lorentzian signature
- Local product of interaction vertex
 - Feynman rules

Output:

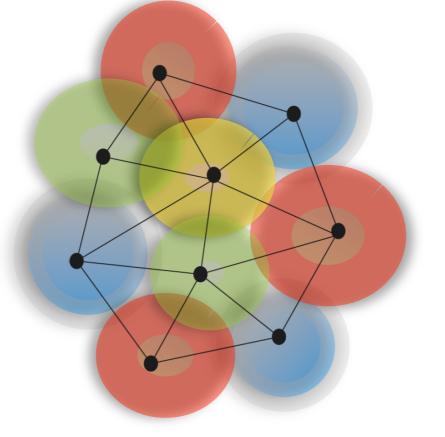
- UV finite
 - Physical cutoff at the Planck scale
- IR finite
 - Cosmological const. = q-deformation
- GR recover in the semiclassical limit!
- Easy to couple YM fields

- Cosmology provides the (only?) ground to check the theory
- A quantum cosmology based on the full quantum theory
 - Possibility to explore the deep quantum regime in the early universe
 - Possibility to include quantum fluctuations naturally

prejudice 1

``in quantum gravity spacetime should be quantized''

QUANTA OF SPACE



- It is a theory about quanta of spacetime
- Each quantum is Lorentz invariant
- The states are boundary states at fixed time
- The physical phase space is spanned by SU(2) group variables

Spinfoam & Cosmology

Francesca Vidotto

 $SL(2,\mathbb{C}) \to SU(2)$

• Abstract graphs: $\Gamma = \{N,L\}$

Group variables: $\begin{cases} h_l \in SU(2) \\ \vec{L}_l \in su(2) \end{cases}$

Graph Hilbert space: $\mathcal{H}_{\Gamma} = L_2[SU(2)^L/SU(2)^N]$

lacksquare The space \mathcal{H}_{Γ} admits a basis $|\Gamma, j_\ell, v_n
angle$

Gauge invariant operator $G_{ll'} = \vec{L}_l \cdot \vec{L}_{l'}$ with $\sum_{l \in n} G_{ll'} = 0$

Penrose's spin-geometry theorem (1971), and Minkowski theorem (1897)

• h_l "Holonomy of the Ashtekar-Barbero connection along the link"

•
$$\vec{L}_l = \{L_l^i\}, i = 1, 2, 3$$
 SU(2) generators
gravitational field operator (tetrad)

Spinfoam & Cosmology

 $L^{i}\psi(h) \equiv \left. \frac{d}{dt}\psi(he^{t\tau_{i}}) \right|$

 v_n

s(l)

 $G_{ll'}$

t(l

 A_l

Composite operators:

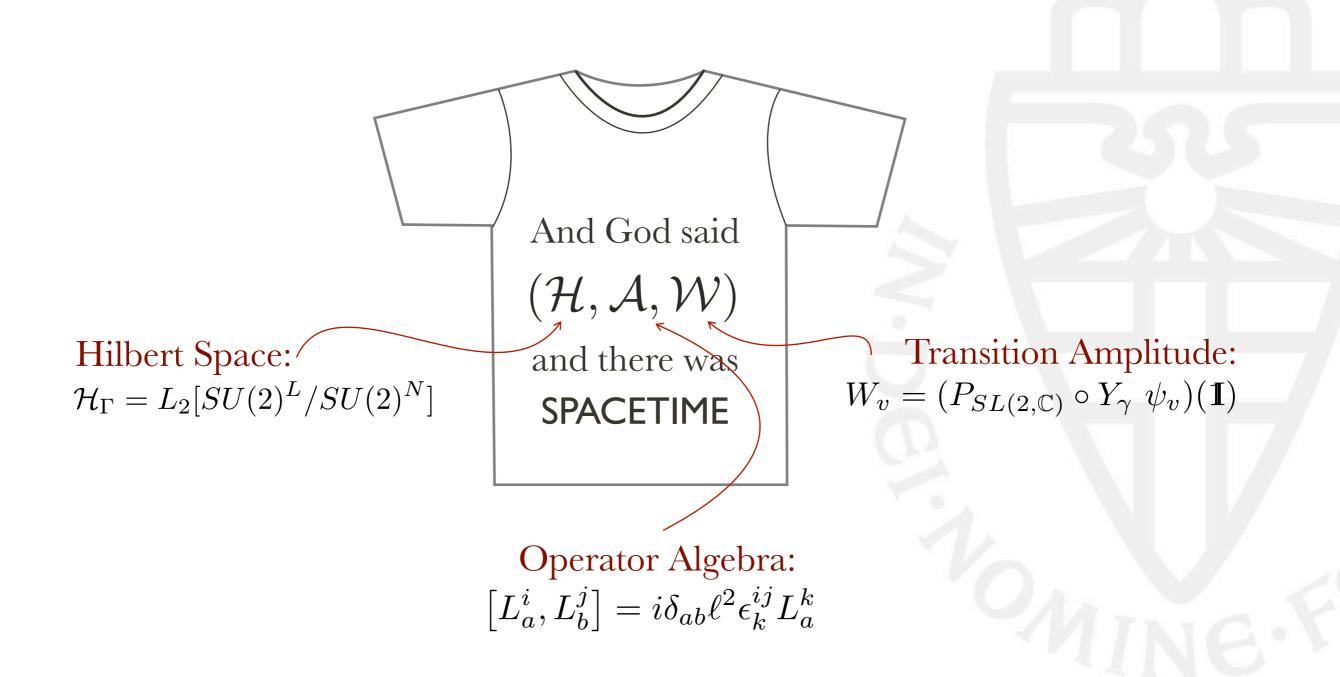
Area:
$$A_{\Sigma} = \sum_{l \in \Sigma} \sqrt{L_l^i L_l^i}.$$
Volume: $V_R = \sum_{n \in R}^{i \in \Sigma} V_n,$ $V_n^2 = \frac{2}{9} |\epsilon_{ijk} L_l^i L_{l'}^j L_{l''}^k|.$ Angle: $L_l^i L_{l'}^i$

- Geometry is quantized:
- eigenvalues are discrete
- the operators do not commute
- quantum superposition
 coherent states

Quantum states of space, rather than states on space.

prejudice 2

"the theory should be so simple and short that it would fit on a tshirt"



 $(\mathcal{H}, \mathcal{A}, \mathcal{W})$ defines a background independent quantum field theory

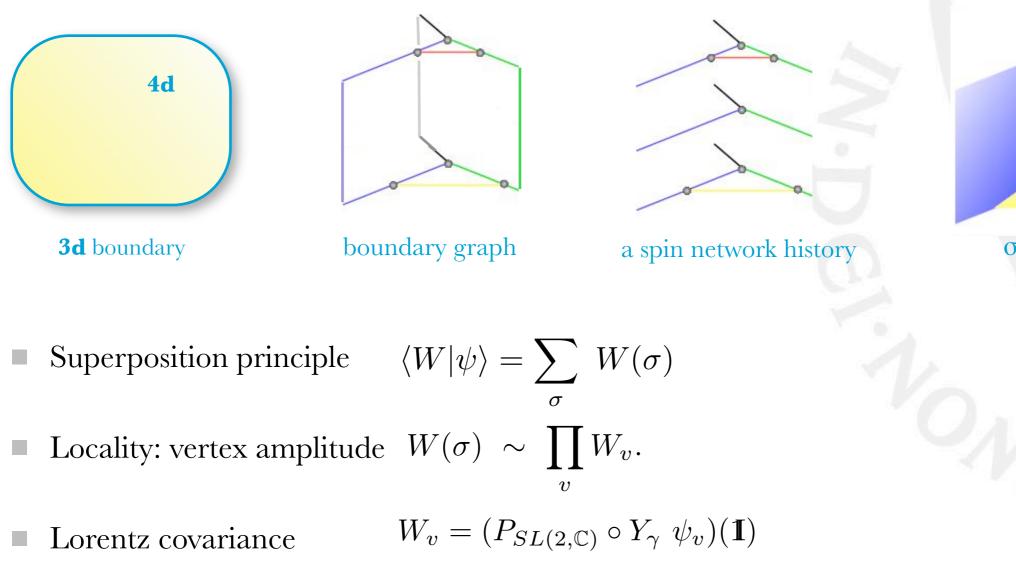
Spinfoam & Cosmology

SPINFOAM AMPLITUDES

[Engle-Pereira-Livine-Rovelli, Freidel-Krasnov '08]

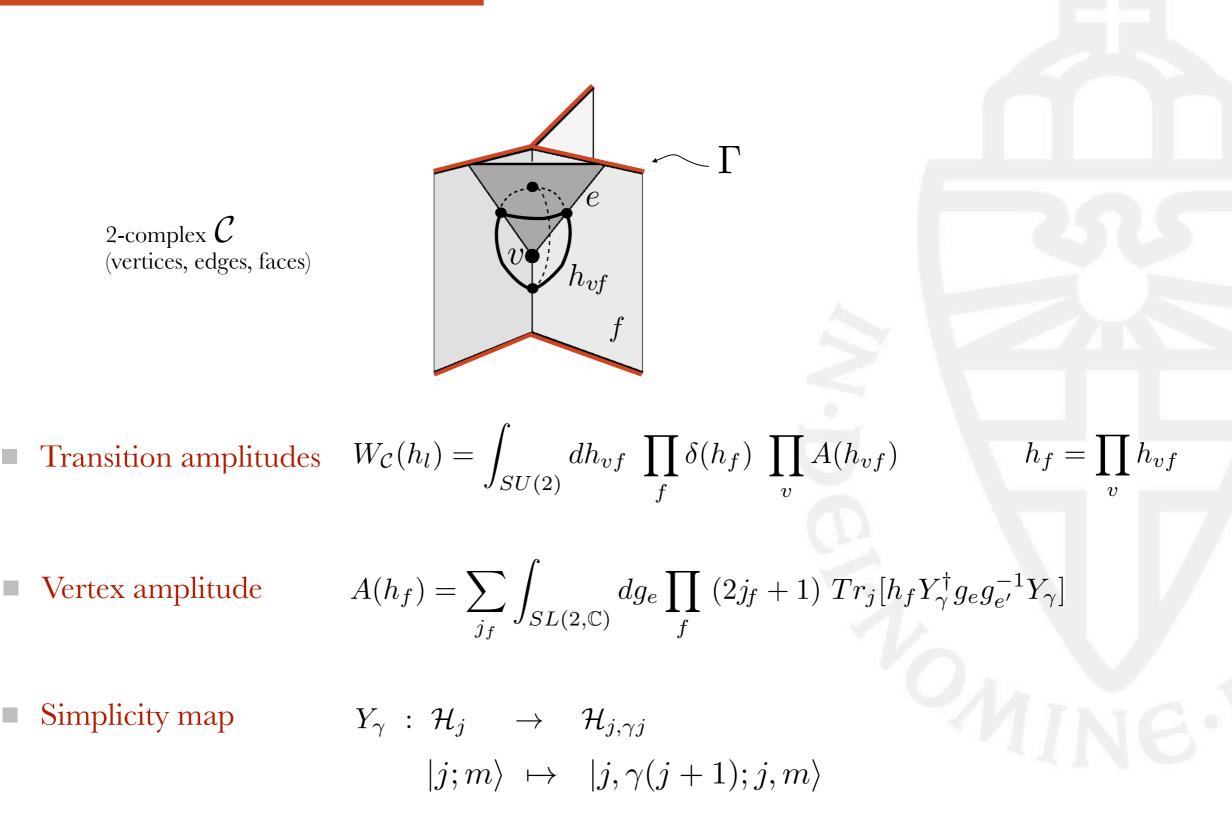
Probability amplitude $P(\psi) = |\langle W | \psi \rangle|^2$

Amplitude associated to a state ψ of a boundary of a 4d region

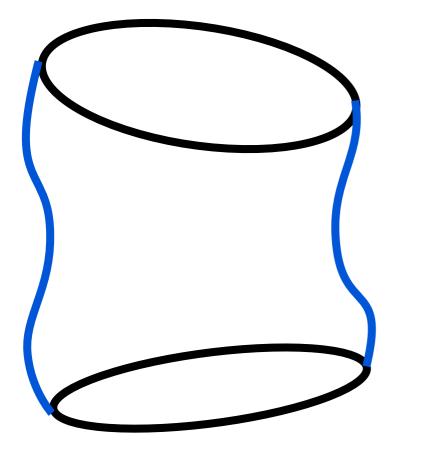


 σ : spinfoam

COVARIANT LQG DYNAMICS

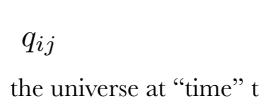


COSMOLOGIACAL TRANSITION AMPLITUDES



 q'_{ij}

the universe at "time" t'



$$W(q'_{ij}, q_{ij}) \sim \int_{\partial g = q', q} Dq \ e^{iS}$$

 Fixed graph with N of nodes. This defines an approximated kinematics of the universe, inhomogeneous but truncated at a finite number of cells.

The graph captures the large scale
d.o.f. obtained averaging the metric
over the faces of a cellular
decomposition formed by N cells.

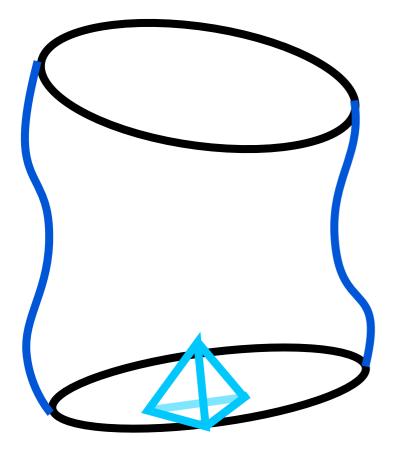
The full theory can be regarded as an expansion for growing N.
FRW cosmology corresponds to the lower order where there is only a regular cellular decomposition: the only d.o.f. is given by the volume.

• Coherent states $|H_{\ell}\rangle$ describing a homogeneous and isotropic geometry: $z = \xi_{\ell} + i\eta_{\ell} \longrightarrow z = \alpha \dot{R} + i\beta R^2 \quad \forall \ell$

Spinfoam & Cosmology

Francesca Vidotto

COSMOLOGIACAL TRANSITION AMPLITUDES



 q'_{ij}

the universe at "time" t'

 q_{ij} the universe at "time" t

```
W(q'_{ij}, q_{ij}) \sim \int_{\partial g = q', q} Dq \ e^{iS}
```

Fixed graph with N of nodes.
 This defines an approximated kinematics of the universe, inhomogeneous but truncated at a finite number of cells.

The graph captures the large scale
d.o.f. obtained averaging the metric
over the faces of a cellular
decomposition formed by N cells.

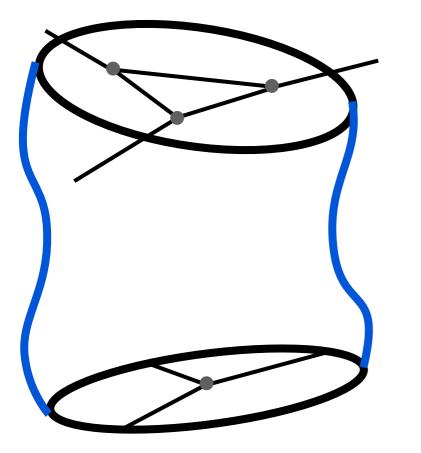
The full theory can be regarded as an expansion for growing N.
FRW cosmology corresponds to the lower order where there is only a regular cellular decomposition: the only d.o.f. is given by the volume.

• Coherent states $|H_{\ell}\rangle$ describing a homogeneous and isotropic geometry: $z = \xi_{\ell} + i\eta_{\ell} \longrightarrow z = \alpha \dot{R} + i\beta R^2 \quad \forall \ell$

Spinfoam & Cosmology

Francesca Vidotto

COSMOLOGIACAL TRANSITION AMPLITUDES



 q_{ij}'

the universe at "time" t'

 q_{ij} the universe at "time" t

 $W(q'_{ij}, q_{ij}) \sim \int_{\partial a=a'a} Dq \ e^{iS}$

Fixed graph with N of nodes.
 This defines an approximated kinematics of the universe, inhomogeneous but truncated at a finite number of cells.

The graph captures the large scale
d.o.f. obtained averaging the metric
over the faces of a cellular
decomposition formed by N cells.

The full theory can be regarded as an expansion for growing N.
FRW cosmology corresponds to the lower order where there is only a regular cellular decomposition: the only d.o.f. is given by the volume.

• Coherent states $|H_{\ell}\rangle$ describing a homogeneous and isotropic geometry: $z = \xi_{\ell} + i\eta_{\ell} \longrightarrow z = \alpha \dot{R} + i\beta R^2 \quad \forall \ell$

Spinfoam & Cosmology

Francesca Vidotto

A REMINDER OF THE CLASSICAL THEORY

Tetrads
$$g_{ab} \rightarrow e_a^i$$
 $g_{ab} = e_a^i e_b^i$ $e = e_a dx^a \in \mathbb{R}^{(1,3)}$ Spin connection $\omega = \omega_a dx^a \in sl(2, \mathbb{C})$ $\omega(e) : de + \omega \wedge e = 0$ GR action $S[e, \omega] = \int e \wedge e \wedge F^*[\omega] + \frac{1}{\gamma} \int e \wedge e \wedge F[\omega]$ (Holst term)BF theory $S[e, \omega] = \int B[e] \wedge F[\omega]$ (Holst term)Canonical variables $\omega, B = (e \wedge e)^* + \frac{1}{\gamma}(e \wedge e)$ $n_i = e_i^a n_a$ $n_i e^i = 0$ $SL(2, \mathbb{C}) \rightarrow SU(2)$ On the boundary $n_i = e_i^a n_a$ $n_i e^i = 0$ $SL(2, \mathbb{C}) \rightarrow SU(2)$ $B \rightarrow (K = nB, L = nB^*)$ Linear simplicity constraint $\vec{K} + \gamma \vec{L} = 0$

Spinfoam & Cosmology

$SL(2,\mathbb{C})$ UNITARY IRRIDUCIBLE REPRESENTATIONS

SU(2) unitary representations:

 $SL(2,\mathbb{C})$ unitary representations:

$$2j \in Z$$

 $\nu = \gamma(k+1)$

 $2k \in N, \quad \nu \in R$

 γ -simple representations:

$$SU(2) \rightarrow SL(2,\mathbb{C})$$
 map:

 $Y_{\gamma}: \mathcal{H}_j \longrightarrow \mathcal{H}_{j,\gamma j}$ $|j;m\rangle \mapsto |(j,\gamma(j+1)); j,m\rangle$

 $|j;m\rangle \in \mathcal{H}_j$

Image of Y_{γ} :

Main property:

 $|k,\nu;j,m\rangle \in \mathcal{H}_{k,\nu} = \bigoplus \mathcal{H}_{k,\nu}^{j}$

 $j=k,\infty$

Boost generator

Rotation generator

j = k Langlands classification: Vogan's minimal k-type)

Spinfoam & Cosmology

prejudice 3

"quantum gravity should remove the infinities of general relativity"

REMOVAL OF INFINITIES 1: singularities

Spinfoam dynamics:

Gauge-fix the tetrads to be diagonal: Lorentzian area $A = \int_{\mathcal{R}} \gamma K^z = \int_{\mathcal{R}} L^z$

$$A_{min} = 4\pi G\hbar$$
 $a_{max} = \sqrt{\frac{1}{8\pi G\hbar}}$ $\ell_{max} = \sqrt{8\pi G\hbar}$

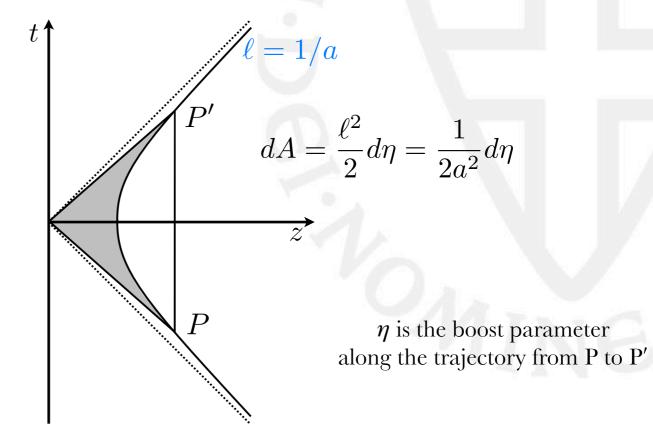
 $\vec{K} + \gamma \vec{L} = 0$

Wedge amplitude:

$$W(\eta, h) = \sum_{j} (2j+1) \operatorname{Tr}_{j} [Y^{\dagger} e^{i\eta K_{z}} Y h]$$
$$= \sum_{j} (2j+1) \operatorname{Tr}_{j} [e^{i\eta \gamma L_{z}} h]$$
$$= \sum_{j,m} (2j+1) e^{i\eta \gamma m} D^{(j)}(h)_{mm}$$

In the coherent-state basis :

$$W(\eta, j) = e^{i\eta 8\pi G\hbar\gamma j}$$



REMOVAL OF INFINITIES 1: singularities

- Minimal distance from the horizon: \$\ell = R/\bar{R}\$
 Maximal acceleration: \$a \sim \sqrt{\bar{R}/R}\$
 Maximal energy density: \$\heta_{max} \sim \frac{3}{8\pi G} \frac{\bar{R}^2}{R^2} \int_{max} = \frac{3}{8\pi G} \ell_{min}^{-2} = \frac{3}{\bar{h}(8\pi G)^2}\$
 CDUE COMM is a box is a simulation of the line of t
- SPINFOAM: singularity are avoided! [Rovelli, FV]
- Minimal volume classically the conjugate variable is the Hubble rate
- LQC: holonomy corrections → bounded Hubble rate! effective eqs: $\ell_P \dot{R}/R \rightarrow \sin(\ell_P \dot{R}/R)$
- Strong singularity are solved: big bang, big crunch, big rip... [Singh, FV]
- Maximal acceleration: it may have implications for weak-singularity resolution [Rovelli, FV]
- No energy condition is violated. It is a pure quantum effect.

REMOVAL OF INFINITIES 2: finiteness of the amplitude

- Early perturbative quantum gravity: **non-renormalizability**
 - **Local:** *observables at arbitrarily small regions in a continuous manifold*
 - Infinite renormalization group
 - Cut-off: *it is a mathematical trick*
- Perturbations methods are some kind of approximation.
- Infinities: we perturb around points that are not really good.
- Non-perturbative approach: presence of a fundamental scale!
- Minimal area $a_o = 8\pi G\hbar\gamma \frac{\sqrt{3}}{2} \rightarrow$ natural UV cut-off
- Cosmological constant $\Lambda > 0 \rightarrow$ natural IR cut-off *horizon*

Han, Fairbairn, Moesburger, 2011 see also Bianchi, Rovelli 20111

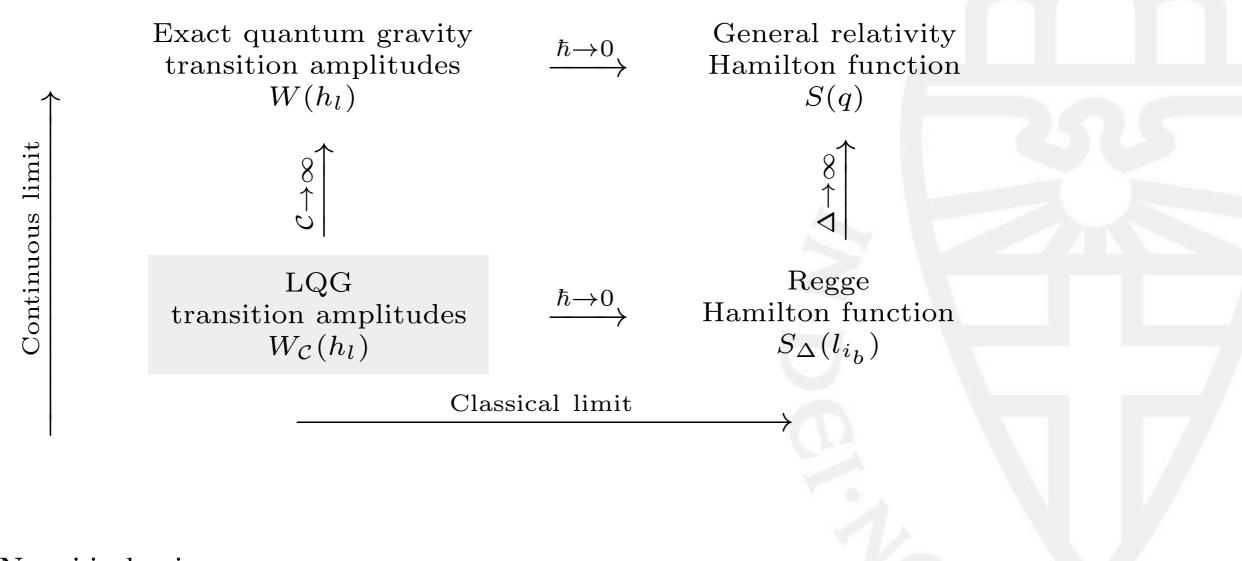
 $\phi_{min} = \sqrt{\Lambda} \ell$ р

REMOVAL OF INFINITIES 2: finiteness of the amplitude

- Planck length + horizon = minimal angular resolution j_{max}
- Mathematically a *fuzzy spheres:* spherical harmonics with $SU(2)_q$
- A maximum angular momentum characterizes the representations of $SU(2)_q$ $q = e^{i2\pi/k}$ with k~2 j_{max} (Majid'88)
- The local rotational symmetry is better described by $SU(2)_q$ than by SU(2), with $q=e^{i\Lambda l_P^2}$
- Physically: non-commutativity, fuzziness of any angular function, impossibility of resolving small dihedral angles.
- Loop gravity: ϕ is an operator with a discrete spectrum.
- Best angular resolution: $\phi_{min} = \sqrt{2/j_{max}}$ with $j_{max} \sim \frac{1}{l_P^2 \Lambda}$ (Major'99)

Francesca Vidotto

(Connes'94)

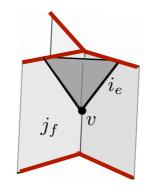


- No critical point
- No infinite renormalization
- Physical scale: Planck length

 Viability of the expansion: first radiative corrections are logarithmic (Riello)
 Regime of validity of the expansion: L_{Planck} ≪ L ≪ √1/R

prejudice 4

"quantum gravity should have general relativity as its classical limit"



Two-complex C (dual to a cellular decomposition)

$$Z = \sum_{j_f, i_e} \prod_f d_{j_f} \prod_v A(j_f, i_e)$$

Theorem : [Barrett, Pereira, Hellmann, Gomes, Dowdall, Fairbairn 2010]

$$A(j_f, i_e) \sim e^{iS_{\text{Regge}}} + e^{-iS_{\text{Regge}}}$$

[Freidel Conrady 2008, Bianchi, Satz 2006, Magliaro Perini, 2011]

Theorem : [Han 2012]

$$W_{\mathcal{C}} \xrightarrow{j \gg 1} e^{iS_{\Delta}} Z_{\mathcal{C}} \xrightarrow{C \to \infty} \int Dg e^{iS[g]}$$

$$A^{q}(j_{f}, i_{e}) \sim e^{iS^{\Lambda}_{\text{Regge}}} + e^{-iS^{\Lambda}_{\text{Regge}}} \qquad q = e^{\Lambda\hbar G}$$

APPLICATIONS: SPINFOAM COSMOLOGY

gravity

$$R_{\mu\nu} - \frac{1}{2} g_{\mu\nu} = 8\pi G T_{\mu\nu}$$

$$ds^{2} = dt^{2} - a^{2}(t) d^{3}\vec{x}$$

canonical / covariant quantization

gravity

 $R_{\mu\nu} - \frac{1}{2} g_{\mu\nu} = 8\pi G T_{\mu\nu}$

quantum gravity

$$W_v = (P_{SL(2,\mathbb{C})} \circ Y_\gamma \ \psi_v)(\mathbf{1})$$

$$ds^{2} = dt^{2} - a^{2}(t) d^{3}\vec{x}$$

quantum gravity

$$W_v = (P_{SL(2,\mathbb{C})} \circ Y_\gamma \ \psi_v)(\mathbf{I})$$

quantum cosmology

symmetry reduction

cosmology

gravity

 $R_{\mu\nu} - \frac{1}{2} g_{\mu\nu} = 8\pi G T_{\mu\nu}$

$$ds^2 = dt^2 - a^2(t) d^3 \vec{x}$$

gravity
$$\longrightarrow$$
 quantum gravity
 $R_{\mu\nu} - \frac{1}{2} g_{\mu\nu} = 8\pi G T_{\mu\nu}$
 $W_v = (P_{SL(2,\mathbb{C})} \circ Y_{\gamma} \psi_v)(\mathbb{I})$
symmetry
reduction
 $quantum
cosmology
 $ds^2 = dt^2 - a^2(t) d^3 \vec{x}$$

$$H=const\,(a\dot{a}^2-rac{\Lambda}{3}a^3)=0$$
 $\dot{a}=\pm\sqrt{rac{\Lambda}{3}a^3}$

Francesca Vidotto

Spinfoam & Cosmology

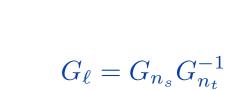
classical dynamics

$$H = const \left(a \dot{a}^2 - rac{\Lambda}{3} a^3
ight) = 0$$
 $\dot{a} = \pm \sqrt{rac{\Lambda}{3}} a$

$$G_\ell = G_{n_s} G_{n_t}^{-1}$$

classical dynamics

$$S_H = const \int dt \left(a\dot{a}^2 + \frac{\Lambda}{3}a^3\right)\Big|_{\dot{a} = \pm\sqrt{\frac{\Lambda}{3}a}} = const \frac{2}{3}\sqrt{\frac{\Lambda}{3}}(a_f^3 - a_i^3)$$



Francesca Vidotto

Spinfoam & Cosmology

classical dynamics

$$S_H = const \int dt \left(a\dot{a}^2 + \frac{\Lambda}{3}a^3\right)\Big|_{\dot{a} = \pm\sqrt{\frac{\Lambda}{3}a}} = const \frac{2}{3}\sqrt{\frac{\Lambda}{3}}\left(a_f^3 - a_i^3\right)$$

quantum dynamics

$$W(a_f, a_i) = e^{\frac{i}{\hbar} S_H(a_f, a_i)} = W(a_f) \overline{W(a_i)}$$

$$G_\ell = G_{n_s} G_{n_t}^{-1}$$

classical dynamics

$$S_H = const \int dt \left(a\dot{a}^2 + \frac{\Lambda}{3}a^3\right)\Big|_{\dot{a} = \pm\sqrt{\frac{\Lambda}{3}a}} = const \frac{2}{3}\sqrt{\frac{\Lambda}{3}}\left(a_f^3 - a_i^3\right)$$

quantum dynamics

$$W(a_f, a_i) = e^{\frac{i}{\hbar} S_H(a_f, a_i)} = W(a_f) \overline{W(a_i)}$$

loop dynamics

$$\langle W|\psi_{H_{(z,z')}}\rangle = W(z,z') = W(z) \overline{W(z')}$$

$$G_\ell = G_{n_s} G_{n_t}^{-1}$$

classical dynamics

$$S_H = const \int dt \left(a\dot{a}^2 + \frac{\Lambda}{3}a^3\right)\Big|_{\dot{a} = \pm\sqrt{\frac{\Lambda}{3}a}} = const \frac{2}{3}\sqrt{\frac{\Lambda}{3}}\left(a_f^3 - a_i^3\right)$$

quantum dynamics

$$W(a_f, a_i) = e^{\frac{i}{\hbar} S_H(a_f, a_i)} = W(a_f) \overline{W(a_i)}$$

loop dynamics

$$\langle W|\psi_{H_{(z,z')}}\rangle = W(z,z') = W(z) \overline{W(z')}$$

order (0)

 $= W_0(h_{\ell}, h_{\ell'}) = \delta_{\Gamma_{\ell}}(h_{\ell}, h_{\ell'})$

 $G_{\ell} = G_{n_s} G_{n_t}^{-1}$

classical dynamics

$$S_H = const \int dt \left(a\dot{a}^2 + \frac{\Lambda}{3}a^3\right)\Big|_{\dot{a} = \pm\sqrt{\frac{\Lambda}{3}a}} = const \frac{2}{3}\sqrt{\frac{\Lambda}{3}}\left(a_f^3 - a_i^3\right)$$

quantum dynamics

$$W(a_f, a_i) = e^{\frac{i}{\hbar} S_H(a_f, a_i)} = W(a_f) \overline{W(a_i)}$$

loop dynamics

$$\langle W|\psi_{H_{(z,z')}}\rangle = W(z,z') = W(z)\overline{W(z')}$$

order (1)

$$W_{\mathcal{C}_{\infty}}(z',z) = \int h_{\ell} \int h'_{\ell} \ \overline{\psi_{z'}(h'_{\ell})} \ W_1(h'_{\ell},h_{\ell}) \ \psi_z(h'_{\ell})$$

$$G_\ell = G_{n_s} G_{n_t}^{-1}$$

classical dynamics

$$S_H = const \int dt \left(a\dot{a}^2 + \frac{\Lambda}{3}a^3\right)\Big|_{\dot{a} = \pm\sqrt{\frac{\Lambda}{3}a}} = const \frac{2}{3}\sqrt{\frac{\Lambda}{3}}\left(a_f^3 - a_i^3\right)$$

quantum dynamics

$$W(a_f, a_i) = e^{\frac{i}{\hbar} S_H(a_f, a_i)} = W(a_f) \overline{W(a_i)}$$

loop dynamics

$$\langle W|\psi_{H_{(z,z')}}\rangle = W(z,z') = W(z)\overline{W(z')}$$

order (1)

$$W_{\mathcal{C}_{\infty}}(z',z) = \int h_{\ell} \int h'_{\ell} \ \overline{\psi_{z'}(h'_{\ell})} \ W_{1}(h'_{\ell},h_{\ell}) \ \psi_{z}(h'_{\ell})$$
$$W_{1}(h'_{\ell},h_{\ell}) = \int_{SL(2,\mathbb{C})} \prod_{n=1}^{N-1} dG_{n} \ \prod_{\ell=1}^{L} \ P(h_{\ell},G_{\ell})P(h'_{\ell},G'_{\ell})$$

 $G_\ell = G_{n_s} G_{n_t}^{-1}$

EVALUATION OF THE AMPLITUDE

$$W(z) = \sum_{j_{\ell}} \prod_{\ell=1}^{L} \frac{1}{\alpha^{3}\sqrt{\det Hess(j_{\ell})}} (2j_{\ell}+1) e^{-2t\hbar j_{\ell}(j_{\ell}+1)-izj_{\ell}} e^{-\frac{1}{2}ij_{\ell}\theta}$$

 $\theta\left(\gamma K+1\right)-\theta=0$

 $j \sim j_o + \delta j$

- Gaussian sum peaked at j_o for all j_ℓ
- max (real part of the exponent) gives where the gaussian is peaked;
 $j_o \sim Im \, \tilde{z}/4t\hbar$
- imaginary part of the exponent $=2k\pi$ gives where the gaussian is not suppressed. $Re \tilde{z} = 0$
- We obtain Minkowski space!

$$W(z) = \left(\sqrt{\frac{\pi}{t}} \ e^{-\frac{\tilde{z}^2}{8t\hbar}} \ 2j_o\right)^L \ \frac{N_{\Gamma}}{j_o^3}$$

 $\dot{a} \sim 0$

$$W(z) = \frac{1}{\alpha^3 \sqrt{\det \operatorname{Hess}(j_\ell)}} \qquad \left(\sum_{j_\ell} (2j_\ell + 1) e^{-2t\hbar j_\ell (j_\ell + 1) - i\tilde{z}j_\ell}\right)$$

Gaussian sum peaked at j_o for all j_ℓ

 $j \sim j_o + \delta j$

- max (real part of the exponent) gives where the gaussian is peaked;
 $j_o \sim Im \, \tilde{z}/4t\hbar$
- imaginary part of the exponent $=2k\pi$ gives where the gaussian is not suppressed. $Re \tilde{z} = 0$
- We obtain Minkowski space!

$$W(z) = \left(\sqrt{\frac{\pi}{t}} \ e^{-\frac{\tilde{z}^2}{8t\hbar}} \ 2j_o\right)^L \ \frac{N_{\Gamma}}{j_o^3}$$

 $\dot{a} \sim 0$

DE SITTER SPACE

[Bianchi FV Krajewski Rovelli]

 $v_e \sim v_o j^{3/2}$

1

$$Z_{\mathcal{C}} = \sum_{j_f, \mathbf{v}_e} \prod_f (2j+1) \prod_e e^{i\lambda \, \mathbf{v}_e} \prod_v A_v(j_f, \mathbf{v}_e)$$

1

$$W(z) = \sum_{j} \left(2j+1\right) \frac{N_{\Gamma}}{j^3} \ e^{-2t\hbar j(j+1) - izj - i\lambda \mathbf{v}_o j^{\frac{3}{2}}}$$

the gaussian is peaked on

$$j_o = \frac{Im(z)}{4t\hbar}$$

the gaussian is not suppressed for $Re(z) + \lambda v_o j^{\frac{1}{2}} = 0.$

$$\blacksquare \frac{Re(z)^2}{Im(z)} = \frac{\lambda^2 \mathbf{v}_o^2}{4t\hbar} \longrightarrow \left(\frac{\dot{a}}{a}\right)^2 = \frac{\Lambda}{3}$$

 $\Lambda = const \,\lambda^2 G^2 \hbar^2$

Spinfoam & Cosmology

$$i\lambda \mathbf{v}_{o} j^{\frac{3}{2}} \sim i\lambda \mathbf{v}_{o} j^{\frac{3}{2}}_{o} + \frac{3}{2}i\lambda \mathbf{v}_{o} j^{\frac{1}{2}}_{o} \delta j$$

TO CONCLUDE

SUMMARY

"in quantum gravity spacetime should be quantized" The theory predicts the existence of quanta of space.
 Minimal eigenvalue in the spectrum of geometrical quantities.
 Lorentz invariance is a basic ingredient, it is preserved.

"the theory should be so simple and short that it would fit on a tshirt" The theory is defined by the triple: Hilbert space, observable algebra and transition amplitudes. All the objects are well defined. The amplitudes can be computed with cosmological states (SPINFOAM COSMOLOGY)

"quantum gravity should remove the infinities of general relativity" The amplitudes are UV and IR finite: Planck length and Λ are fundamental.
 Renormalization: first radiative corrections are logarithmic.
 In cosmology, Spinfoam support and extend the resolution of cosmological singularities.

"quantum gravity should have general relativity as its classical limit" The boundary states represent classical geometries. The classical limit of the vertex amplitude gives the Regge Hamilton function. In cosmology, Friedmann equations for Minkowski and deSitter are recovered.

Mercí!

