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Abstract The quantization of gravity offers a solution to the presence of
singularities in cosmology. Infinities are removed because of the existence
of finite quanta of spacetime. This is one of the most important prediction
of Loop Quantum Gravity. But treating gravity on the same footing as the
other quantum field theories introduces a different kind of infinities: the ones
from the renormalization procedure. In the covariant formulation of Loop
Quantum Gravity (Spinfoam) this kind of infinities are tamed by the pres-
ence of the cosmological constant. These two results are guided by a specific
perspective on the appearance of infinity in physics: this is just interpreted
as a signpost that the theory should be improved. It arises from our limited
knowledge, and not as a fundamental fact of nature.
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To see a world in a grain of sand
And heaven in a wild flower,

Hold infinity in the palm of your
Hand and eternity in one hour.

William Blake

1 Becoming and discreteness

The first question that we can trace in the history of Western philosophy
seems to be, at the eyes of a contemporary physicist, the mother of all ques-
tions: what is Being? what is Becoming? Are these two states conciliable?

Radboud University Nijmegen, Institute for Mathematics, Astrophysics and Parti-
cle Physics, Mailbox 79, P.O. Box 9010, 6500 GL Nijmegen, The Netherlands
E-mail: fvidotto@science.ru.nl



2

This history, whose main characters can be identified in Parmenides and
Democritus, passes trough the figure of Zeno. Zeno was at the same time
a disciple of Parmenides, but also a friend of Leucippus, the grandfather
of atomism, later fully developed in Democritus. Zeno proposed his famous
paradox as a tale of Achilles and the turtle. As traditionally phrased, Zeno
was confused by the assumption that every infinite series diverges, while the
convergence of infinite series has been studied by mathematicians only in
the XVIII century. Despite the way out from the paradox provided by later
mathematicians, the core of the problem addressed by Zeno still stands as
an open problem in our contemporary understanding of the world. The usual
interpretation of the paradox is that Zeno was trying to demonstrate the the-
sis of Parmenides, according to whom the fundamental unity of everything
would not allow change to exist: change would be an illusion. But anther
possible interpretation could instead place Zeno on the opposite side, the
side of his friend Leucippus: we see change, and in order not to fall in the
paradoxical paralysis of Achilles, we have to assume that the word is made
by fundamental discrete pieces, the Democritean atoms. In this view, what
in fact exists is only the becoming, that in the language of modern physics
we would call process. And this is intimately entangled to the fundamental
discrete nature of everything, in particular of space and time.

Quantum gravity, at least as presented by Rovelli’s school, appears as the
contemporary heir of this position. On the one side, there is the relational
interpretation of quantum mechanics, where all the ontological meaning is
shifted away from the wave function in favor of the measurement outcomes,
and the disappearing of an absolute time in favor of many relational times
governed by the interactions, as suggested by general relativity. On the other
side, we have the basic result of Loop Quantum Gravity [1–3] : the theory
predicts the existence of quanta of spacetime. In Zeno’s words, we cannot
subdivide space infinitely. There exist a fundamental scale, the Planck length.

2 Constants of Nature

The existence of a minimal length scale is the main feature of quantum
gravity and gives it a universal character, analogous to special relativity and
quantum mechanics. Special relativity can be seen as the discovery of the
existence of a maximal local physical velocity, the speed of light c. Quantum
mechanics can be interpreted as the discovery of a minimal action ~ in all
physical interactions, or equivalently the fact that a finite region of phase
space contains only a finite number of distinguishable (orthogonal) quantum
states, and therefore there is a minimal amount of information in the state of
a system. Quantum gravity is the discovery that there is a minimal length.

The existence of a fundamental length, the absolute building block of
spacetime structure, has been realized since when both Quantum Mechanics
and General Relativity became available. This can be easily understood using
some few semiclassical considerations. Every particle is a localized excitation
of some field, but the localization cannot be more precise than the intrinsic
uncertainty derived from Heisenberg relation: ∆x > ~/∆p, so that for a sharp
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location a large momentum p is required. Large momentum implies large en-
ergy E. In the relativistic limit, where rest mass is negligible, E ∼ cp. Sharp
localization requires large energy. But General Relativity teaches us that any
form of energy E acts as a gravitational mass M ∼ E/c2 and distorts space-
time around itself. The distortion increases when energy is concentrated, to
the point that a black hole forms when a mass M is concentrated in a sphere
of radius R ∼ GM/c2, where G is the Newton constant. As a consequence, if
we concentrate a lot of energy in ∆x to get a sharper localization, the horizon
radius R will grow to the point to be larger then ∆x. But in this case the
region of size ∆x that we wanted to mark will be hidden beyond a black hole
horizon, preventing the localization. Therefore it has no mean to decrease ∆x
lower than ∆x = R. Combining the relations above, one realizes that there
exists a minimal size where a quantum particle cannot be localized without
being hidden by its own horizon. This is the Planck length

`P =

√
~G
c3
∼ 10−35m.

This is the simplest combination of Quantum Mechanics and General
Relativity. It tells us that below the Planck scale it make no sense to talk
about distances. It points to the presence of a quantum discreteness but still
it does not tell us how the notion of quantum discreteness may emerge in
spacetime. People realized immediately the importance of this assumption
for the resolution of cosmological singularities, but what was lacking was a
mechanism to see this fundamental length emerging in a quantum theory of
gravity.

The presence of a minimal length in the infinitely small has consequence
for the infinitely large [4]. Suppose, as Einstein liked, that our universe is a

3-sphere with radius, say, 1/
√
Λ, or that we live in a Lorentzian space with

a horizon at that distance. Since we cannot observe anything smaller than
the Planck length, if there is an object of size `P at such a distance, we will
never see it under an angle smaller than φmin =

√
Λ `P .

In such a situation, everything we see is captured, on the local celestial
2-sphere formed by the directions around us, by spherical harmonics with
j ≤ jmax. Since the j-th spherical harmonic distinguishes dihedral angles of
size φ2 ∼ 4π/(2j + 1), we won’t see harmonics with j > jmax = 4π/φ2min ∼
4π/`2P Λ. The quantization of geometry suggests that also angles should be
quantized [5,6], pointing to the presence of another fundamental constant:
the cosmological constant, an uncertainty factor in the minimal resolution of
small angles in the sky.

3 Quanta of spacetime

The lesson of General Relativity yields background independence: spacetime
is not the playground for field interactions, but is an interacting field as
the others. Our modern understanding of fundamental forces, or better said
fields, is that they are associated to some gauge symmetry. In the Standard
Model, these symmetries are respectively U(1) for electromagnetism, SU(2)
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for the weak interaction and SU(3) for the strong interaction. Gravity does
not differ and can be written as a gauge theory.

General Relativity admits a version where, instead of the metric, the
fundamental object are reference fields: the tetrads. One can always express
the metric in terms of the tetrads, therefore the tetrad version can be consider
equivalent to the original metric formulation. On the other hand, only in the
tetrad formulation it is possible to couple fermions to the gravitational field:
since we observe fermions in nature, this makes the tetrad version of General
Relativity somehow more fundamental.

So let us start by the tetrads. The invariance under diffeomorphisms of
General Relativity imposes the independence by coordinate transformations.
This implies that for each point of spacetime we have to associate a tetrad
that is locally Lorentz invariant. But time is pure gauge in General Relativity
and we can always fix this gauge, leaving us only with the rotational part of
the Lorentz transformation.1 This gauge invariance, that naturally arises in
the classical gravitational theory, is the starting point in order to jump to the
quantum theory. The quantum states have to be thought as boundary states
[7,8], describing the space geometry at some fixed time. When it comes to
quantization, the tetrad turns out to be the generator of SU(2) transforma-
tions, satisfy the well-known algebra of the angular momentum. This implies
that spacetime is quantized with a discrete spectrum. So actually we don’t
have any more a tetrad for each spacetime point, but a tetrad for each quanta
of spacetime. On each quanta of spacetime it does not matter how the ref-
erence fields are oriented, but only the relations between adjacent quanta. A
spinnetwork state in Loop Quantum Gravity [9,3] is a gauge invariant state
(invariant under the rotations of the triads) that knows about the excitations
of each quanta of spacetime (its spin, that is related to its physical size) and
the adjacency relation between them (coded in an abstract graph).

The gauge invariance of the triads yields the presence of a gauge field,
as in the other Yang-Mills theories. This is an object in the Lorentz algebra,
that code the information about (intrinsic and extrinsic) curvature. In order
to define gauge invariant observables in the quantum theory, we consider the
path-ordered exponential of the gauge field. This is called a Wilson loop2

(from this the designation Loop for the quantum theory) and turns out to
be the canonically conjugate variable to the triad.

Loop Quantum Gravity variables are group variables, as the variables of
the other interactions are. Since SU(2) is a compact group, the spectrum
of the observables corresponding to these group variables are discrete. In
particular, in Loop Quantum Gravity the geometry can be describes trough
observables such as areas, volumes and angles, constructed starting from the
operator corresponding to the triads.

1 The canonical analysis of General Relativity shows that when we perform an
ADM decomposition of spacetime, the Lapse and the Shift functions are in fact
Lagrangian multipliers. In the covariant theory, this is reflected in the simplicity
constraint that connect respectively boost and rotation as K + γL = 0, where γ is
the Immirzi parameter.

2 These are Wilson loops in the language of particle physics or holonomies in the
language of differential geometry: if the gauge field is seen as the connection over
the SU(2) principal bundle, the holonomy is its parallel transport.
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The presence of a minimal eigenvalue in the discrete spectrum of the area
plays in cosmology the same role of the minimal eigenvalue of the angular
momentum for atomic physics. In the classical theory, all the trajectories
fall into a singularity: the electrons spiral down into the atomic nucleus,
all the matter of the universe gets evolved back in time into the big bang.
The dissolution of continuous spacetime into quanta of spacetime prevents
singularity theorems to apply.3 Singularity theorems do not point to the
presence of some infinity in Nature, but they rather signal the boundary
beyond which the classical theory ceases to be valid.

The Loop quantization removes all the cosmological (physical) singular-
ities [12–14]. It is a genuine consequence of the quantization, rather than
the result of some exotic condition imposed to our universe. There is no
fine-tuning of initial conditions, nor an ad hoc boundary condition at the
singularity. Furthermore, matter can satisfy all the standard energy condi-
tions.4 The result has proven to hold even in presence of anisotropies and
inhomogeneities.

4 Covariant transition amplitudes

Quantum discreteness of spacetime is a powerful achievement, but it is only
the starting point of a beautiful journey into a new quantum theory. The
kinematical space of Loop Quantum Gravity has some powerful elements
of novelty, with deep consequence for our understanding of space and time
through cosmological abyss. It opens the door to a new world, where new
infinities must to be faced in order for the theory to survive.

The early attempts to quantize gravity with perturbative techniques got
stuck5 because of the non-renormalizability of the resulting theory. In a non-
perturbative approach to quantum gravity, this problem can be overcome
having clear in mind that the existence of the Planck length sets quantum

3 The left hand side of the classical Einsteins equations is modied by the quantum
geometry corrections, invalidating the hypothesis that Penrose and Hawking had
[10]. On the other hand, the more recent singularity theorems by Borde, Guth and
Vilenkin [11] do not refer to Einsteins equations. They assume that the expansion
is positive along any past geodesic as they are motivated by the eternal inationary
scenario. Because of the pre-big-bang contracting phase, this assumption is violated
in the LQC effective theory.

4 There is a zoo of possible cosmological singularities, beyond the notorious big
bang: big rip singularities, sudden singularities, big freeze singularities, big brake...
When the singularity regards spacetime itself, taking the form of a divergence in
the curvature or of its derivative, loop quantization promptly resolve it. If instead
the singularity is a divergence in the pressure or its derivative, loop quantization
seems to have nothing to say: these are not singularity where spacetime breaks as
geodetics can be continued trough them [15–18].

5 The non-renormalizability obtained in perturbation theory has pushed the the-
oreticians into a quest for a larger renormalizable or finite theory. The quest has
wandered through the investigation of modifications of GR with curvature square
terms in the action, Kaluza-Klein-like theories, supergravity, and has lead to String
Theory, a presumably finite quantum theory of all interactions including gravity,
defined in 10 dimensions, including supersymmetry and so far difficult to reconcile
with the observed world.
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gravity aside from standard quantum field theory for two reasons. First, we
cannot expect quantum gravity to be described by a local quantum field
theory, in the strict sense of this term [19]. Local quantum theory requires
quantum fields to be described by observables at arbitrarily small regions in a
continuous manifold. This is not going to happen in quantum gravity. Second,
the quantum field theories of the standard model are defined in terms of an
infinite renormalization group. The existence of the Planck length indicates
that this is not going to be the case for quantum gravity.

When computing transition amplitudes for a field theory using perturba-
tion methods, infinite quantities appear. What is the nature of these infini-
ties? Perturbation methods are some kind of approximation. Infinities arise
because we perturb around points that are not really good.6 In Feynman
graphs the interaction for small loops take us to an arbitrarily small dimen-
sion, but this is not a physical fact: it is a mistake of the approximation used.
Renormalization is a powerful tool for the computation, but it does not mean
that every time that there is a phenomenon at some scale there are all the
infinities down of that scale. In fact, renormalization theory is exactly what
tells us that we can correct all that just by readjusting the coefficients. Even
in a renormalizable Quantum Field Theory, where we need to compute only
a finite number of (properly chosen) degrees of freedom, renormalization has
to be used.

The standard technique consists in the introduction of a cut-off which
removes the infinities. The definition of the theory is adjusted so that the
cut-off dependence tune the physical observables to match the experimental
observations. The cut-off can be regarded as a technical trick, not something
physical. Accordingly, care is taken so that the final amplitudes do not depend
on the short scale cut-off.7 This general structure has proven effective for
describing particle physics, but it is not likely to be the structure that works
for quantum gravity.

In quantum gravity the cut off in the modes is not a mathematical trick for
removing infinities, but a genuine physical feature of the quantum spacetime.8

The Planck length provides an ultraviolet physical cut off. The cosmological
constant provide an infrared cut off. These make the theory finite.

6 If we fly from Paris to Toronto and at the first order we disregard the resistance
of the air while studying the trajectory, we would find that at the first order the
airplane is on Saturn, so we have to perform the normalization and bring it back.

7 Condensed matter offers a prototypical example of independence from short-
scale cut off: second order phase transitions. At a critical point of a second order
phase transition, the behavior of the system becomes scale independent, and large
scale physics is largely independent from the microscopic dynamics.

8 This is not a strange situation: on the contrary, it is usual condensed matter
away from the critical point. Take, for instance, a bar of iron at room temperature.
Its behavior at macroscopic scales is described by a low energy theory, characterized
by a certain number of physical constants. This behavior includes wave propagation
and finite correlation functions. The tower of modes of the bar has an effect on
the value of the macroscopic physics, and can still be explored by studying the
renormalization group equation describing the dependence of physical parameters
on the scale. But the system is characterized by a physical and finite cut-off scale,
the atomic scale; and there are no modes of the bar beyond this scale. The bar can
be described as a system with a large but finite number of degrees of freedom.
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How does the cosmological constant enter the definition of the theory?
The presence of a cosmological constant, as Einstein’s theory allows and as
experiments confirm, implies the presence of an horizon, a maximal distance.
We have seen that this, combined with the existence of a minimal length,
implies that we can not resolve small angles on the local celestial 2-sphere
formed by the directions around us. This physical situation is realized by the
notion of “fuzzy sphere” [20–23], described by the algebra of the angular func-
tions spanned by the spherical harmonics with j ≤ jmax. The mathematics
of this kind of systems is realized by the notion of quantum group: the repre-
sentations of the quantum deformation of the rotation group SUq(2), where

q = ei2π/k, are characterized by a maximum angular momentum k ∼ 2jmax
[24–26].

This picture is realized concretely in loop gravity for quantizations of
general relativity with a cosmological constant (see for instance [27–29]). In
Loop Quantum Gravity the angle φ between two directions in space is an
operator with a discrete spectrum [30,5]. Its eigenvalues are labeled by two
spins j1, j2, associated to the two directions, and a quantum number k =
|j1−j2|, . . . , j1+j2. The expression of the angle eigenvalues present a minimal

one, that yields an angular resolution no better than φmin =
√

2/jmax for
some jmax � 1.

The SUq(2) quantum deformation parameter q is related to the Planck

length `P and the cosmological constant Λ: q = eiΛl
2
P . The combination of the

quantum-gravitational space granularity with the maximal size determined
by the cosmological constant yields immediately a local quantum-group struc-
ture. Notice that the deformation parameter is dimensionless, and by itself
does not determine a scale at which physical space becomes fuzzy.

The quantum deformation affects the local gauge. The local gauge of
General Relativity in the time gauge is SU(2), interpreted as the universal
covering of the group of physical rotations around any given point in space.
In a universe characterized by an horizon at distance 1/

√
Λ and a minimal

length lP , the local rotational symmetry is better described by SUq(2) than
by SU(2). A quantum deformation of this group corresponds, physically, to a
non-commutativity, and therefore to a consequent intrinsic fuzziness, of any
angular function. In other words, it describes the impossibility of resolving
small dihedral angles of view.

The use of quantum groups in Loop Quantum Gravity started with [31,
32] and has gained a central role in the covariant approach [33–35]. On
the other hand, quantum groups and non-commutative spaces have been
repeatedly utilized in various approaches to quantum gravity [36–52]. The
associated non-commutative spaces are generally interpreted as describing
a Planck-scale quantum uncertainty in position, while from this prospective
the fuzziness is instead in the directions, as noticed in [4]. This geometrical
interpretation is compatible with the spectral point of view on space implicit
in [53] and [54] and with the 4d-angle (speed) quantization in [55].
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4.1 A finite quantum cosmology

A system manifests its quantum nature in different ways. Quantum mechan-
ics is often popularized as a theory about the world at short distance, but a
more careful understanding would make us realize that ~ may enter in the
description of large system, till the extreme case of the description of universe
as a whole.

The quantization may appear as the discretization of physical quantities,
associated to a short-scale fuzziness implied by the uncertainty relations.
We have seen that the quantization of spacetime implies the discretization
into quanta of spacetime. As the mathematical tools of continuos differential
geometry are substituted with discrete analogues, the insidious infinities such
as the cosmological singularities disappear.

Another manifestation of the quantization results in the probabilistic na-
ture of the evolution of the system, so that the evolution has to be expressed
by transition amplitudes. We have seen that Loop Gravity provides finite
transition amplitudes between spacetime states. In particular, one can calcu-
late the probability to go from an universe with a given geometry to another
[56–58]. The states can describe a homogeneous and isotropic geometry, or
states with inhomogeneities and anisotropies [59,60].

The removal of singularities and the availability of states for the geom-
etry of the universe, that are genuinely quantum-gravity states, open the
investigation of a new physical region. Where before there were infinities and
physical non-senses, now there are physical states that can be studied. Fi-
nally, philosophical issues such as the initial conditions or the cosmological
averaging find a new promising framework where they can be addressed.

5 Holy infinities

According to Eliade’s definition of sacred [61], sacred is everything that we
feel such as not belonging to human world. It could be a space, it could be a
time, it could be everything that goes beyond our human experience. In this
world, we size things with respect to us: we say heavens are up in the sky
because we are confined down by gravity, we measure land in terms of our
foot, we count as much as needed by our daily experience. Modeling, sizing
and counting are sophisticated tools that we have developed but are not given
a priori. There are still some of our brothers in Amazonia and in Australia,
in whose culture does not exist a word for four : they know one, they know
two, they know three, then they have a word for many, and one for many
many. Some of us can count longer, but this pose us a problem: is there an
end to counting? Is there something that we can not model/size/count? We
call infinite what is beyond our human experience. We call in this way what
cannot be said. But if this is a condition of our human nature, it has not to
be something that has necessarily to exist in Nature. Infinity can exist as a
mathematical object, a powerful tool for our calculation. But physics is not
just mathematics. It is a discourse about Nature trough the mathematical
language, where the ultimate goal is to associate a number to a physical
system, and from this number a meaning. An infinity has the meaning of
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beyond our present knowledge. But making science and making physics is to
constantly push forward the boundary of our knowledge, in a process that
cannot have an end.

When an infinity is presented to a scientist, the scientist’s job is to find a
theory that replace such an infinity with a finite number. “There are some,
king Gelon, who think that the number of the sand is infinite in multitude”
starts Archimedes’ “Sand Reckoner” [62]. Archimedes engages in the count
of how many grain of sands there would be if the whole universe would have
been filled by them. In order to picture what no other mind had been able
to picture before, he invents a new notations for big numbers, in a way not
so distant from the current scientific notation. He was able to name what
before had no other name but a generic “infinite”. A prototypical scientific
deed.

But sacred text still beware us about infinities: they belong to the sacred,
they should not be addressed by humans.

All wisdom comes from Yahweh
and with him it remains forever.

The sand of the seashore, and the drops of rain,
and the days of eternity: who can number these?

Heaven’s height, earth’s breadth,
the depths of the abyss: who can explore these?

Before all other things wisdom was created;
and prudent understanding, from eternity.

The wellspring of wisdom is the word of God in the heights,
and her runlets are the eternal commandments.

Joshua ben Sira [63]

Despite centuries of rational investigation, are we still under the spell of the
sacrality of infinities?

The history of modern cosmology is an example of this tension between
the rational explanation of the world and find the holy place where gods
hide. We due the understanding that Einstein’s equation were bearing an
unstable universe, coming from an expanding history, to the Belgian priest
George Lemâıtre. He was the one giving meaning to Friedmann’s calculation,
telling Einstein that such an instability was unavoidable (with or without
the cosmological constant), and finding experimental support of his theory
in galaxy redshift. A beginning for the universe, was seen by part of the
clergy as opportunity to use of science to support religious beliefs (Genesis’
fiat lux ), at the point that Pope Pius XII publicly speck about the big bang
as a good manifestation. Lemâıtre reacted to this: he did not believe that
any scientific true should be searched in the Bible, as scientific opinions in
the Bible reflect only the common knowledge at the time of writing. He was
aware of the precarious condition of every scientific truth: today’s infinities
may become finite tomorrow...
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6 Conclusions

Physics is about a quantitative description of the world around us. Infinities
represent an end point for physics: their appearance means that we can not
associate a finite number to the system under study. Infinities provide the
most tantalizing paradoxes to physicists: they point to the old assumptions
that we have to give away in order to go beyond our present theories, toward
the explorations of new level of energy, space and time. In this sense, every
infinity and its overcoming is the turning point for a new paradigm.

“I think that what is truly infinite may just be the abyss of our ignorance.”
Carlo Rovelli [64] 9
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